机器学习 - 需要了解的条件概率、高斯分布、似然函数

news2025/2/11 8:59:21

似然函数是连接数据与参数的桥梁,通过“数据反推参数”的逆向思维,成为统计推断的核心工具。理解它的关键在于区分“参数固定时数据的概率”与“数据固定时参数的合理性”,这种视角转换是掌握现代统计学和机器学习的基础。

一、在学习似然函数之前,我们需要弄懂什么是条件概率

概率是指在事件 B 已经发生的前提下,事件 A 发生的概率,记作 P(A|B),读作“在 B 发生的条件下 A 发生的概率”。其定义为:

其中,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(B) 表示事件 B 发生的概率。需要注意的是,P(B)必须大于零,否则条件概率无法定义。

示例:

一个标准的52张扑克牌堆,问从中随机抽取一张牌,这张牌是红心的概率是多少?这是一个无条件概率问题,答案(红心) = 13/52 = 1/4。

现在,假设已知抽到的牌是一张(或方片),在此条件下,这张牌是红心的条件概率是多少?这是一个条件概率问题。

设事件 A 为“抽到红心”,事件 B 为“抽到红色牌”,则:

  • P(A ∩ B) = P(红心) = 13/52
  • P(B) = P(红心或方片) = 26/52 = 1/2

因此,条件概率 P(A|B) 为:

需要注意的是,条件概率 P(A|B) 与 P(B|A) 一般不相等。例如,在上述例子中,P(红心|红色牌) = 1/2,而 P(红色牌|红心) = 1,因为在抽到红心的情况下,必然是一张红色牌。

条件概率在统计学、概率论以及机器学习等领域有广泛的应用,特别是在贝叶斯定理中,条件概率是核心概念之一。

二、还需要弄懂什么是高斯分布?

(一)高斯分布

高斯分布(也称为正态分布)是统计学中最常见的连续概率分布之一。其概率密度函数呈对称的钟形曲线,描述了数据在均值附近的集中程度。高斯分然科学和社会科学中广泛应用,常用于表示未知的随机变量。

概率密度函数

对于均值为 μ、标准差为 σ 的高斯分布,其概率密度函数为:

其中,μ 决定了分布的位置,σ 决定了分布的幅度。

标准正态分布: μ = 0、σ = 1 时,标准正态分布,其概率密度函数为:

性质:

  • **对称性:*斯分布关于均值 μ 对称。

  •  68-95-99.7 规则: 在高斯分布中,约68%的数据位于均值±1σ范围内,约95%位于均值±2σ范围内,约99.7%位于均值±3σ范围内。

在三维视图中,二维高斯分布的概率密度函数图像类似于一个倒置的碗,中心最高,向四周逐渐降低。其数学表达式为::

应用:

高斯分布在统计学中具有重要地位,常用于描述自然和社会科学中的随机变量。例如,在测量误差分析中,假设误差服从高斯分布可以简化分析过程。

此外,根据中心极限定理,当对大量独立同分布的随机变量求和时,其和的分布趋近于高斯分布,这使得高斯分布在统计推断中尤为重要。

需要注意的是,虽然高斯分布在理论和应用中广泛存在,但并非所有数据都服从高斯分布。在进行数据分析时,应首先检验数据的分布特性,以选择适当的统计模型。

为了直观理解,我们来看一下高斯分布对应的图像:

高斯分布(也称为正态分布)的图像呈现为对称的钟形曲线,其形状由均值(μ)和标准差(σ)决定。均值 μ 确定曲线的中心位置,标准差 σ 控制曲线的宽度和高度。标准差越小,曲线越陡峭;标准差越大,曲线越平坦。

(二)形象理解高斯分布

1. 直观比喻

想象你在测量一群人的身高:

  • 高斯分布:大部分人的身高集中在某个平均值附近(如170cm),极端高或矮的人较少。

  • 观测数据 y:每次测量的身高值(如169cm、171cm、168cm等)。

  • 假设 y 服从高斯分布:意味着这些测量值围绕某个“中心值”波动,且波动规律符合高斯分布的形状(钟形曲线)。

2. 具体场景

以线性回归为例:

三、然后来掌握什么是似然函数

1.认识连乘运算符“∏”的用法:

2.了解独立同分布的意义:

在概率论与统计学中,独立同分布(Independent and Identically Distributed,简称 i.i.d.)指一组随机变量彼此独立,且服从相同的概率分布。这意味着每个随机变量的取值不会影响其他变量的取值,并且它们具有相同的分布特性。

独立:随机变量之间互不影响,即一个变量的取值不依赖于其他变量的取值。

同分布:所有随机变量遵循相同的概率分布,具有相同的分布函数、期望值和方差等统计特性。

示例

  • 抛硬币实验:假设我们进行多次抛硬币实验,每次记录硬币正面朝上的结果。每次抛掷都是独立的(一次抛掷的结果不影响另一次),且每次抛掷的结果服从相同的分布(正面和反面的概率相同)。因此,这些抛掷结果构成一组独立同分布的随机变量。

  • 掷骰子实验:假设我们多次掷骰子,每次记录掷出的点数。每次掷骰子都是独立的,且每次的结果服从相同的分布(每个点数出现的概率相同)。因此,这些掷骰子的结果也是独立同分布的随机变量。

独立同分布是许多统计推断和机器学习方法的基础假设。例如,在训练机器学习模型时,通常假设训练数据是从同一分布中独立采样的,以确保模型对新数据的有效性。

需要注意的是,独立同分布并不意味着每个事件发生的概率都相同,而是指随机变量之间相互独立,并且遵循相同的概率分布。

3.认识似然函数

(1)似然函数的概念

给定一组独立同分布的数据样本 x1,x2,...,xn,假设它们服从高斯分布,则似然函数表示在给定参数(μ, σ²)下,观测到这组数据的概率。

由于对数函数是单调递增的,通常对似然函数取对数,得到对数似然函数:

通过最大化对数似然函数,可以估计参数μ和σ²的值。

因此,似然函数和高斯分布的关系在于,假设数据服从高斯分布时,似然函数基于高斯分布的概率密度函数构建,用于估计分布的参数。

定义:

似然函数是统计学中用来 “衡量模型参数在已知数据下的合理性” 的工具。简单来说,它通过观测到的数据,告诉我们 “不同参数值对产生这些数据的可能性有多大”

核心思想:逆向思维
  • 概率:已知参数 → 预测数据可能性
    (例:已知硬币是公平的(参数θ=0.5),抛10次出现6次正面的概率是多少?)

  • 似然:已知数据 → 推测参数可能性
    (例:抛10次硬币观察到6次正面,此时参数θ=0.5的“似然值”有多大?θ=0.6呢?)

类比

  • 概率:天气预报说“明天下雨的概率70%” → 预测未来。

  • 似然:今天下雨了 → 推测“气象台模型参数设置是否合理”。

数学形式

(2)如何理解“似然”

(3)最大似然估计(MLE

(4)关键区别:似然 vs 概率

(5)常见误区和实际应用场景:

  • 误区1:认为“似然值高”等于“参数正确”。
    → 实际只能说明“参数对当前数据更合理”。

  • 误区2:混淆似然函数与后验概率。
    → 后验概率 = 似然 × 先验概率(需贝叶斯框架)。

  • 误区3:忽略数据的独立性假设。
    → 若数据不独立,联合似然的乘积形式不成立。

  1. 参数估计:如线性回归、逻辑回归中的MLE。

  2. 模型选择:通过比较不同模型的似然值(如AIC准则)。

  3. 假设检验:构建似然比检验(Likelihood Ratio Test)。

这篇文章,我整理了学习最大似然估计之前的基础知识,在掌握了这些知识之后,我们下一步进行学习线性回归中,求最优参数的最大似然估计的方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2295621.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Spring】什么是Spring?

什么是Spring? Spring是一个开源的轻量级框架,是为了简化企业级开发而设计的。我们通常讲的Spring一般指的是Spring Framework。Spring的核心是控制反转(IoC-Inversion of Control)和面向切面编程(AOP-Aspect-Oriented Programming)。这些功能使得开发者…

[笔记] 汇编杂记(持续更新)

文章目录 前言举例解释函数的序言函数的调用栈数据的传递 总结 前言 举例解释 // Type your code here, or load an example. int square(int num) {return num * num; }int sub(int num1, int num2) {return num1 - num2; }int add(int num1, int num2) {return num1 num2;…

开放式TCP/IP通信

一、1200和1200之间的开放式TCP/IP通讯 第一步:组态1214CPU,勾选时钟存储器 第二步:防护与安全里面连接机制勾选允许PUT/GET访问 第三步:添加PLC 第四步:点击网络试图,选中网口,把两个PLC连接起…

(原创,可用)SSH实现内外网安全穿透(安全不怕防火墙)

目前有A、B终端和一台服务器,A、B机器不能直接访问,服务器不能直接访问A、B终端但是A、B终端可以访问服务器,这个场景很像我们有一台电脑在单位内网,外机器想访问内网系统,可能大家目前想到的就是frp之类穿透工具&…

第二节 docker基础之---镜像构建及挂载

查看当前镜像: [rootdocker ~]# docker images REPOSITORY TAG IMAGE ID CREATED SIZE [rootdocker ~]#很明显docker是咱们新搭建的所以目前还没有镜像 1,搜索镜像: [rootdocker ~]# docker search centos 搜索镜像并过滤是官…

LLM学习笔记1——本地部署Meta-Llama-3.2-1B大模型

系列文章目录 参考博客 参考博客 文章目录 系列文章目录前言与调用一、部署要求二、实现步骤0.深度学习环境错误1,验证pytorch版本时提示以下问题:错误2,验证pytorch版本时提示以下问题:错误3,有时候还会提示你有一些…

AI安全最佳实践:AI应用开发安全评估矩阵(上)

生成式AI开发安全范围矩阵简介 生成式AI目前可以说是当下最热门的技术,吸引各大全球企业的关注,并在全球各行各业中带来浪潮般的编个。随时AI能力的飞跃,大语言模型LLM参数达到千亿级别,它和Transformer神经网络共同驱动了我们工…

deepseek+kimi自动生成ppt

打开deepseek官网,输入详细的需求,让他生成个ppt 接着deepseek开始思考生成了 接着复制生成了的内容 打开kimi粘贴刚才deepseek生成的内容 可以一键生成啦,下载编辑使用吧

《薄世宁医学通识50讲》以医学通识为主题,涵盖了医学的多个方面,包括医学哲学、疾病认知、治疗过程、医患关系、公共卫生等

《薄世宁医学通识50讲》是一门由薄世宁医生主讲的医学通识课程,该课程旨在通过深入浅出的方式,向广大听众普及医学知识,提升公众对医学的认知和理解。 晓北斗推荐-薄世宁医学通识 以下是对该课程的详细介绍: 一、课程概述 《薄世…

突破与重塑:逃离Java舒适区,借Go语言复刻Redis的自我突破和成长

文章目录 写在文章开头为什么想尝试用go复刻redis复刻redis的心路历程程序员对于舒适区的一点看法关于mini-redis的一些展望结语 写在文章开头 在程序员的技术生涯长河中,我们常常会在熟悉的领域中建立起自己的“舒适区”。于我而言,Java 就是这片承载…

优惠券平台(一):基于责任链模式创建优惠券模板

前景概要 系统的主要实现是优惠券的相关业务,所以对于用户管理的实现我们简单用拦截器在触发接口前创建一个单一用户。 // 用户属于非核心功能,这里先通过模拟的形式代替。后续如果需要后管展示,会重构该代码 UserInfoDTO userInfoDTO new…

TensorFlow域对抗训练DANN神经网络分析MNIST与Blobs数据集梯度反转层提升目标域适应能力可视化...

全文链接:https://tecdat.cn/?p39656 本文围绕基于TensorFlow实现的神经网络对抗训练域适应方法展开研究。详细介绍了梯度反转层的原理与实现,通过MNIST和Blobs等数据集进行实验,对比了不同训练方式(仅源域训练、域对抗训练等&am…

09vue3实战-----引入element-plus组件库中的图标

09vue3实战-----引入element-plus组件库中的图标 1.安装2.引入3.优化 element-plus中的icon图标组件的使用和其他平台组件(如el-button按钮)是不一样的。 1.安装 npm install element-plus/icons-vue2.引入 在这我们只讲述最方便的一种引入方法------完整引入。这需要从elem…

消费电子产品中的噪声对TPS54202的影响

本文章是笔者整理的备忘笔记。希望在帮助自己温习避免遗忘的同时,也能帮助其他需要参考的朋友。如有谬误,欢迎大家进行指正。 一、概述 在白色家电领域,降压转换器的应用非常广泛,为了实现不同的功能就需要不同的电源轨。TPS542…

[Meet DeepSeek] 如何顺畅使用DeepSeek?告别【服务器繁忙,请稍后再试。】

文章目录 [Meet DeepSeek] 如何顺畅使用DeepSeek?告别【服务器繁忙,请稍后再试。】引言使用渠道一:硅基流动 Chatbox AI【推荐】硅基流动 Chatbox AI的优势 使用渠道二:秘塔AI搜索秘塔AI搜索的优势 其它方案1. DeepSeek官网2. 纳…

Websocket从原理到实战

引言 WebSocket 是一种在单个 TCP 连接上进行全双工通信的网络协议,它使得客户端和服务器之间能够进行实时、双向的通信,既然是通信协议一定要从发展历史到协议内容到应用场景最后到实战全方位了解 发展历史 WebSocket 最初是为了解决 HTTP 协议在实时…

学习Cherry Studio AI服务平台,主要是各种功能的实践(deepseek 1.5b和7b的模型+ChatGLM3模型)

Cherry Studio 介绍 Cherry Studio 是一个支持多模型服务的桌面客户端,为专业用户而打造,内置 30 多个行业的智能助手,帮助用户在多种场景下提升工作效率。 CherryStudio内置众多服务商 同时也支持其他兼容OpenAI/Anthropic等API格式的服务…

【实用教程】在 Android Studio 中连接 MuMu 模拟器

MuMu 模拟器是一个非常流行的安卓模拟器,特别适合开发人员进行应用测试,我使用它的根本原因在于Android Studio自带的AVM实现是太难用了,但是Mumu模拟器启动以后不会自动被Android Studio识别到,但是其他模拟器都是能够正常被Andr…

Linux 系统搭建 Python 开发环境全流程

Linux 系统搭建 Python 开发环境全流程 Python 解释器下载 Pycharm 对应版本解压安装包进入解压后的目录启动 Pycharm创建桌面快捷方式(可选)Pycharm 配置创建第一个目录第一个程序运行补充 Python 解释器 确保电脑里已经有了python解释器,没…

第16章 Single Thread Execution设计模式(Java高并发编程详解:多线程与系统设计)

简单来说, Single Thread Execution就是采用排他式的操作保证在同一时刻只能有一个线程访问共享资源。 1.机场过安检 1.1非线程安全 先模拟一个非线程安全的安检口类,旅客(线程)分别手持登机牌和身份证接受工作人员的检查,示例代码如所示。…