【AIGC魔童】DeepSeek核心创新技术(二):MLA

news2025/2/8 12:50:51

【AIGC魔童】DeepSeek核心创新技术(二):MLA

    • 1. MLA框架的定义与背景
    • 2. MLA框架的技术原理
      • (1)低秩联合压缩
      • (2)查询的低秩压缩
      • (3)旋转位置嵌入(RoPE)
    • 3. MLA框架的优势
    • 4. MLA框架的核心价值

DeepSeek 的 MLA(Multi-head Latent Attention)框架凭借其独特的技术原理和显著优势,吸引了众多关注。下面将详细解读 MLA 框架。

1. MLA框架的定义与背景

DeepSeek 是一家专注于人工智能技术的公司,其开发的 MLA(Multi-Head Latent Attention)框架是 DeepSeek-V3 模型中用于高效推理的核心注意力机制。MLA 通过低秩联合压缩技术,减少了推理时的键值(KV)缓存,从而在保持性能的同时显著降低了内存占用。这一技术的出现,是为了应对传统 Transformer 模型在大规模语言模型(LLM)推理过程中面临的内存瓶颈问题。

在标准的 Transformer 模型中,多头注意力(Multi-Head Attention, MHA)机制通过并行计算多个注意力头来捕捉输入序列中的不同特征。每个注意力头都有自己的查询(Query, Q)、键(Key, K)和值(Value, V)矩阵,计算过程如下:

  • 查询矩阵 Q:用于计算输入序列中每个位置的注意力权重。

  • 键矩阵 K:用于与查询矩阵 Q 计算注意力分数。

  • 值矩阵 V:用于根据注意力分数加权求和,得到最终的输出。

然而,这种机制在处理长序列时,会面临巨大的内存开销。例如,对于一个长度为 S 的序列,每个头的维度为 d ,则每个头的 KV 缓存大小为2 x S x d 。对于大规模模型,这会导致显存占用过高,限制了模型的推理效率。

为了解决这一问题,MLA 框架应运而生。它通过低秩联合压缩技术,将 KV 缓存的存储需求显著降低,同时保持了模型的性能。这一技术的核心在于,通过低秩分解和矩阵变换,将原本需要存储的大量 KV 值压缩为更小的维度,从而减少了显存的使用量。

2. MLA框架的技术原理

MLA 框架本质上是一种优化后的注意力机制。在理解它之前,我们先来简单了解一下什么是注意力机制。在大语言模型处理信息时,比如处理一段文本,它需要知道文本中哪些部分是重要的,哪些部分相对次要,注意力机制就像是模型的 “聚焦器”,帮助模型把重点放在关键信息上。而 MLA 框架则是在这个基础上,进一步优化,让模型在处理信息时更加高效。
在这里插入图片描述

(1)低秩联合压缩

  • 核心思想MLA 的一个关键技术是对注意力机制中的键(Key)和值(Value)进行低秩联合压缩。简单来说,就是把原本较大的数据量通过一定的方式变小,这样在推理的时候,需要缓存的键值(KV)对数量就会减少。

低秩联合压缩技术是 DeepSeek MLA 框架的核心,它通过将高维的键(Key)和值(Value)矩阵压缩到低维空间,从而显著减少存储需求。在传统的多头注意力机制中,每个头的键和值矩阵都需要单独存储,这在处理长序列时会导致巨大的内存开销。例如,对于一个长度为 S 的序列,每个头的维度为 d ,则每个头的 KV 缓存大小为2 x S x d 。对于大规模模型,这会导致显存占用过高,限制了模型的推理效率。

MLA 框架通过低秩联合压缩技术解决了这一问题。它首先将输入数据压缩到一个低秩空间,然后再通过上投影矩阵将其恢复到原始维度。这种压缩方式不仅减少了存储需求,还保持了模型的性能。具体来说,MLA 的低秩联合压缩过程如下:

低秩压缩:首先对输入进行低秩压缩,将维度为 d 的输入压缩到维度为 r(其中r << d ),通过一个低秩变换矩阵 Wr 实现:

在这里插入图片描述

其中, Wr是一个d x r 的矩阵,将输入压缩到低秩空间。

扩展维度:然后通过两个变换矩阵Wk和Wv ,将低秩的 Latent_KV 扩展回原始维度d ,得到每个头的 K 和 V:

在这里插入图片描述

其中,Wk和Wv是r x d的矩阵,用于将低秩表示恢复到原始维度。

计算注意力:最后,通过查询矩阵 Q 与 K 计算注意力分数,并使用 V 进行加权求和,得到最终的输出:

在这里插入图片描述

通过这种方式,MLA 框架不仅减少了 KV 缓存的存储需求,还保持了模型的性能,使得大规模语言模型的推理变得更加高效。想象一下,原本模型需要一个很大的 “仓库” 来存放键值对信息,现在通过低秩压缩,“仓库” 变小了,在推理过程中内存使用就减少了,推理效率也就提升了。

(2)查询的低秩压缩

  • 优化目的:除了对键和值进行压缩,MLA 还对注意力查询(Query)进行低秩压缩,以减少训练过程中的激活内存。查询可以理解为模型在寻找信息时提出的问题,对查询进行压缩,能让模型在训练时更节省内存资源。

  • 实现方式:查询的低秩压缩通过类似的投影操作实现,具体公式如下:

在这里插入图片描述

其中,WQdown是查询的下投影矩阵, qi是第 i 个 token 的查询向量。通过这个投影操作,将查询向量也进行了低秩压缩。

  • 性能保持:尽管 MLA 通过低秩压缩减少了 KV 缓存和激活内存,但它仍然能够保持与标准多头注意力(MHA)相当的性能。这就好比一辆车,经过改装后,不仅更省油(减少内存占用),速度还没有变慢(性能相当)。

(3)旋转位置嵌入(RoPE)

位置信息处理:在处理长序列时,位置信息非常重要。比如 “我今天去了北京” 和 “今天我去了北京”,虽然词语相同,但表达的意思可能因为位置不同而有所差异。MLA 架构结合了旋转位置嵌入(RoPE)来有效处理长序列中的位置依赖问题。

作用:RoPE 通过旋转操作将位置信息嵌入到键和查询中。具体来说,对于位置n和维度2i、2i + 1 ,RoPE 的操作如下:

在这里插入图片描述

其中,qn是位置n的查询向量。通过这样的旋转操作,模型能够更好地捕捉长距离依赖关系,从而提升对长序列的处理能力。

3. MLA框架的优势

  • 内存占用少:低秩联合压缩和查询的低秩压缩,减少了 KV 缓存和激活内存,降低模型在推理和训练时对内存的需求,利于在资源有限的设备上运行模型。

  • 推理效率高:内存占用减少,模型处理信息速度加快,能更高效生成结果,比如在对话系统中能更快回复用户问题。

  • 长序列处理能力强:结合 RoPE,模型能更好处理长序列,理解文本中长距离的依赖关系,处理长篇文档时表现更出色。

4. MLA框架的核心价值

MLA(Multi-Head Latent Attention)框架通过低秩联合压缩技术,解决了传统 Transformer 模型在大规模语言模型推理过程中面临的内存瓶颈问题。其核心优势在于显著减少了 KV 缓存的存储需求,同时保持了模型的性能。具体来说,MLA 框架通过低秩压缩和矩阵变换,将高维的键(Key)和值(Value)矩阵压缩到低维空间,再通过上投影矩阵将其恢复到原始维度,从而减少了显存的使用量。这一技术不仅显著降低了内存占用,还提高了推理效率,使得大规模语言模型的推理变得更加高效。此外,MLA 框架具有很强的兼容性,可以无缝集成到现有的 Transformer 模型中,无需对模型架构进行大规模的修改,这使得其在实际应用中具有广泛的应用前景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2294786.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

安卓/ios脚本开发按键精灵经验小分享

1. 程序的切换 我们经常碰到这样的需求&#xff1a;打开最近的应用列表&#xff0c;选取我们想要的程序。但是每个手机为了自己的风格&#xff0c;样式都有区别&#xff0c;甚至连列表的滑动方向都不一样&#xff0c;我们很难通过模拟操作来识别点击&#xff0c;那么我们做的只…

完全离线部署deepseek并建立本地知识库应用电子数据取证领域

点击上方蓝字“小谢取证”一起玩耍 之前小谢推出一篇部署本地大模型教程&#xff0c;但需要网络环境 AI机器人本地免费部署&#xff08;部署Llama 3.1详细教程&#xff09; 还是比较受到读者的欢迎&#xff0c;但应读者要求&#xff1a;需要这个模型能够训练&#xff0c;能够…

ctf网络安全题库 ctf网络安全大赛答案

此题解仅为部分题解&#xff0c;包括&#xff1a; 【RE】&#xff1a;①Reverse_Checkin ②SimplePE ③EzGame 【Web】①f12 ②ezrunner 【Crypto】①MD5 ②password ③看我回旋踢 ④摩丝 【Misc】①爆爆爆爆 ②凯撒大帝的三个秘密 ③你才是职业选手 一、 Re ① Reverse Chec…

SolidWorks教程P2.2【草图 | 第二节】——草图几何关系与编辑

草图几何关系包括&#xff1a;重合、中点、相切、平行、相等、共线、对称 草图编辑功能包括&#xff1a;裁剪实体、转换实体引用、等距实体 目录 1.草图几何关系 2.裁剪实体 3.转换实体引用 4.等距实体 补充知识&#xff1a;智能尺寸 1.草图几何关系 在之前的草图介绍里…

数据库系统概念第六版记录 三

外码约束&#xff08;Foreign Key Constraint&#xff09; 外码&#xff08;Foreign Key, FK&#xff09;是关系数据库中的一个约束&#xff0c;它用于保证表之间的引用完整性。外码的值必须&#xff1a; 要么存在于被引用表的主键列中&#xff0c;要么为空&#xff08;NULL&…

MySQL视图索引操作

创建学生表&#xff1b; mysql> create table Student(-> Sno int primary key auto_increment,-> Sname varchar(30) not null unique,-> Ssex char(2) check (Ssex男 or Ssex女) not null,-> Sage int not null,-> Sdept varchar(10) default 计算机 not …

HIVE如何注册UDF函数

如果注册UDF函数的时候报了上面的错误&#xff0c;说明hdfs上传的路径不正确&#xff0c; 一定要用下面的命令 hadoop fs -put /tmp/hive/111.jar /user/hive/warehouse 一定要上传到上面路径&#xff0c;这样在创建函数时&#xff0c;引用下面的地址就可以创建成功

硬件电路基础

目录 1. 电学基础 1.1 原子 1.2 电压 1.3 电流 1.电流方向&#xff1a; 正极->负极,正电荷定向移动方向为电流方向&#xff0c;与电子定向移动方向相反。 2.电荷&#xff08;这里表示负电荷&#xff09;运动方向&#xff1a; 与电流方向相反 1.4 测电压的时候 2. 地线…

蓝耘智算平台使用DeepSeek教程

目录 一.平台架构与技术特点 二、DeepSeek R1模型介绍与优势 DeepSeek R1 模型简介 DeepSeek R1 模型优势 三.蓝耘智算平台使用DeepSeek教程 展望未来 耘元生代智算云是蓝耘科技推出的一款智算云平台有着以下特点&#xff1a; 一.平台架构与技术特点 基于 Kubernetes 原…

脚本一键生成管理下游k8s集群的kubeconfig

一、场景 1.1 需要管理下游k8s集群的场景。 1.2 不希望使用默认的cluster-admin权限的config. 二、脚本 **重点参数&#xff1a; 2.1 配置变量。 1、有单独namespace的权限和集群只读权限。 2、自签名的CA证书位置要正确。 2.2 如果配置错误&#xff0c;需要重新…

发布:大彩科技DN系列2.8寸高性价比串口屏发布!

一、产品介绍 该产品是一款2.8寸的工业组态串口屏&#xff0c;采用2.8寸液晶屏&#xff0c;分辨率为240*320&#xff0c;支持电阻触摸、电容触摸、无触摸。可播放动画&#xff0c;带蜂鸣器&#xff0c;默认为RS232通讯电平&#xff0c;用户短接屏幕PCB上J5短接点即可切换为TTL电…

简述mysql 主从复制原理及其工作过程,配置一主两从并验证

MySQL 主从复制原理及其工作过程 MySQL 主从复制&#xff08;Master-Slave Replication&#xff09;是一种数据同步技术&#xff0c;其中一个 MySQL 实例&#xff08;主库&#xff09;将其数据变更&#xff08;插入、更新、删除&#xff09;通过二进制日志&#xff08;Binary …

华北平原shp格式范围

华北平原是中国东部的重要地理区域&#xff0c;以下是对其的简要介绍&#xff1a; 此数据为付费数据&#xff0c;如有需求&#xff0c;请联系本人。 1. 地理位置与范围 位置&#xff1a;位于中国东部&#xff0c;西起太行山脉和伏牛山&#xff0c;东至黄海、渤海&#xff0c;北…

Unity 快速入门 1 - 界面操作

本项目将快速介绍 Unity 6的基本操作和功能&#xff0c;下载附件的项目&#xff0c;解压到硬盘&#xff0c;例如 D:\Unity Projects\&#xff0c; 注意整个文件路径中只有英文、空格或数字&#xff0c;不要有中文或其他特殊符合。 1. 打开Unity Hub&#xff0c;点击右上角的 O…

网站改HTTPS方法

默认的网站建设好后打开的样子那看起来像是钓鱼网站&#xff0c;现在的浏览器特别只能&#xff0c;就是你新买来的电脑默认的浏览器同样也会出现这样“不安全”提示。 传输协议启动了向全球用户安全传输网页内容的流程。然而&#xff0c;随着HTTPS的推出&#xff0c;传输协议通…

采用idea中的HTTP Client插件测试

1.安装插件 采用idea中的HTTP Client插件进行接口测试,好处是不用打开post/swagger等多个软件,并且可以保存测试时的参数,方便后续继续使用. 高版本(2020版本以上)的idea一般都自带这个插件,如果没有也可以单独安装. 2.使用 插件安装完成(或者如果idea自带插件),会在每个Con…

记录 | WPF基础学习Style局部和全局调用

目录 前言一、Style1.1 例子1.2 为样式起名字1.3 BasedOn 继承上一个样式 二、外部StyleStep1 创建资源字典BaseButtonStyle.xamlStep2 在资源字典中写入StyleStep3 App.xaml中写引用路径【全局】Step4 调用三、代码提供四、x:Key和x:Name区别 更新时间 前言 参考文章&#xff…

【STM32】HAL库USB虚拟U盘MSC配置及采用自带的Flash作为文件系统

【STM32】HAL库USB虚拟U盘MSC实现配置及采用自带的Flash作为文件系统 本文将自带的Flash作为文件系统 通过配置USB的MSC功能实现虚拟U盘 没有单独建立FATFS文件系统 仅仅是配置USB和Flash读写而已 当然 这里也可以用外部Flash等等 也可以配置文件系统来进行套壳 但总体而言不如…

深浅拷贝~

深浅拷贝&#xff1a;直接赋值给的是地址&#xff0c;如果修改赋值后的变量&#xff0c;实际上连同原变量的值一并修改了。 浅拷贝 展开运算符 {...obj} 拷贝对象 Object.assign(新&#xff0c;旧) 深拷贝 递归&#xff1a;自己调用自己 以下实际是浅拷贝 递归调用处理数组问题…

开源项目介绍-词云生成

开源词云项目是一个利用开源技术生成和展示词云的工具或框架&#xff0c;广泛应用于文本分析、数据可视化等领域。以下是几个与开源词云相关的项目及其特点&#xff1a; Stylecloud Stylecloud 是一个由 Maximilianinir 创建和维护的开源项目&#xff0c;旨在通过扩展 wordclou…