DeepSeek的多模态AI模型-Janus-pro,可生图,可读图

news2025/3/13 11:48:20

简介

Janus-Pro 是由 DeepSeek 开发的一款多模态理解与生成模型,是 Janus 模型的升级版。它能够同时处理文本和图像,既能理解图像内容,又能根据文本描述生成高质量图像。Janus-Pro 的核心目标是通过解耦视觉编码路径,解决多模态理解与生成任务之间的冲突,从而提升模型的灵活性和性能。

在这里插入图片描述

Janus-Pro 提供了 1B 和 7B 两种参数规模的版本,支持开源和免费商用,适用于多种应用场景,如广告设计、游戏开发、教育等。

核心特点

Janus-Pro 的核心特点包括:

  • 解耦视觉编码:通过独立的路径分别处理多模态理解和生成任务,避免任务间的冲突。理解任务使用 SigLIP 编码器提取高维语义特征,生成任务使用 VQ Tokenizer 将图像转换为离散 ID。

  • 统一 Transformer 架构:采用单一的自回归 Transformer 架构处理多模态任务,简化模型设计并提高扩展性。

  • 优化的训练策略:包括延长训练时间、调整数据比例、增加高质量合成数据等,显著提升了模型的生成能力和稳定性。

  • 加粗样式**多任务支持:能够同时处理图像生成、图像理解、跨模态推理等多种任务,推理能力强大。
    在这里插入图片描述

模型架构

在这里插入图片描述

Janus-Pro 的架构设计基于以下关键组件:

  • 视觉编码器:

多模态理解任务使用 SigLIP 编码器提取高维语义特征,并将其映射到语言模型的输入空间。

图像生成任务使用 VQ Tokenizer 将图像转换为离散 ID,并通过生成适配器映射到输入空间。

  • 自回归 Transformer:将文本和图像特征序列整合为统一的多模态特征序列,输入到 DeepSeek-LLM 中进行处理。

训练阶段:

  • 第一阶段:训练适配器和图像头部,建立语言与视觉元素的联系。

  • 第二阶段:统一预训练,使用多模态语料库学习理解和生成任务。

  • 第三阶段:监督微调,优化模型在多模态理解和生成任务中的表现。
    在这里插入图片描述

性能对比

Janus-Pro 在多个基准测试中表现优异:

  • 多模态理解:在 MMBench 测试中,Janus-Pro-7B 得分为 79.2,超越了 TokenFlow-XL(68.9)和 MetaMorph(75.2)等模型。

  • 在这里插入图片描述

  • 图像生成:在 GenEval 测试中,Janus-Pro-7B 得分为 0.80,优于 DALL-E 3(0.67)和 Stable Diffusion 3 Medium(0.74)。
    在这里插入图片描述

  • 综合能力:Janus-Pro 在复杂场景的文本-图像对齐度和细节还原方面表现突出,生成的图像具有较高的真实性和细节。
    在这里插入图片描述
    在这里插入图片描述

应用场景与未来展望

Janus-Pro 在广告设计、游戏开发、教育等领域具有广泛的应用潜力。未来,DeepSeek 计划通过提高输入分辨率、改进训练数据等方式进一步提升模型性能。

相关文献参考

论文地址
modelscope模型地址
github地址
demo在线

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2294049.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python爬虫实战:一键采集电商数据,掌握市场动态!

电商数据分析是个香饽饽,可市面上的数据采集工具要不贵得吓人,要不就是各种广告弹窗。干脆自己动手写个爬虫,想抓啥抓啥,还能学点技术。今天咱聊聊怎么用Python写个简单的电商数据爬虫。 打好基础:搞定请求头 别看爬虫…

游戏引擎 Unity - Unity 下载与安装

Unity Unity 首次发布于 2005 年,属于 Unity Technologies Unity 使用的开发技术有:C# Unity 的适用平台:PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域:开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…

理解 C 与 C++ 中的 const 常量与数组大小的关系

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C语言 文章目录 💯前言💯数组大小的常量要求💯C 语言中的数组大小要求💯C 中的数组大小要求💯为什么 C 中 const 变量可以作为数组大小💯进一步的…

孟加拉国_行政边界省市边界arcgis数据shp格式wgs84坐标

这篇内容将深入探讨孟加拉国的行政边界省市边界数据,该数据是以arcgis的shp格式提供的,并采用WGS84坐标系统。ArcGIS是一款广泛应用于地理信息系统(GIS)的专业软件,它允许用户处理、分析和展示地理空间数据。在GIS领域…

Java设计模式:行为型模式→状态模式

Java 状态模式详解 1. 定义 状态模式(State Pattern)是一种行为型设计模式,它允许对象在内部状态改变时改变其行为。状态模式通过将状态需要的行为封装在不同的状态类中,实现对象行为的动态改变。该模式的核心思想是分离不同状态…

快速幂,错位排序笔记

​ 记一下刚学明白的快速幂和错位排序的原理和代码 快速幂 原理: a^b (a^(b/2)) ^ 2(b为偶数) a^b a*(a^( (b-1)/2))^2(b为奇数) 指数为偶数时…

机器人基础深度学习基础

参考: (1)【具身抓取课程-1】机器人基础 (2)【具身抓取课程-2】深度学习基础 1 机器人基础 从平面二连杆理解机器人学 正运动学:从关节角度到末端执行器位置的一个映射 逆运动学:已知末端位置…

Java语法进阶

目录: Object类、常用APICollection、泛型List、Set、数据结构、CollectionsMap与斗地主案例异常、线程线程、同步等待与唤醒案例、线程池、Lambda表达式File类、递归字节流、字符流缓冲流、转换流、序列化流、Files网络编程 十二、函数式接口Stream流、方法引用 一…

《chatwise:DeepSeek的界面部署》

ChatWise:DeepSeek的界面部署 摘要 本文详细描述了DeepSeek公司针对其核心业务系统进行的界面部署工作。从需求分析到技术实现,再到测试与优化,全面阐述了整个部署过程中的关键步骤和解决方案。通过本文,读者可以深入了解DeepSee…

单节锂电池外部供电自动切换的电路学习

文章目录 前言一、原理分析:①当VBUS处有外部电源输入时②当VBUS处无外部电源输入时 二、器件选择1、二极管2、MOS管3、其他 总结 前言 学习一种广泛应用的锂电池供电自动切换电路 电路存在外部电源时,优先使用外部电源供电,并为电池供电&…

数据结构-堆和PriorityQueue

1.堆&#xff08;Heap&#xff09; 1.1堆的概念 堆是一种非常重要的数据结构&#xff0c;通常被实现为一种特殊的完全二叉树 如果有一个关键码的集合K{k0,k1,k2,...,kn-1}&#xff0c;把它所有的元素按照完全二叉树的顺序存储在一个一维数组中&#xff0c;如果满足ki<k2i…

如何打造一个更友好的网站结构?

在SEO优化中&#xff0c;网站的结构往往被忽略&#xff0c;但它其实是决定谷歌爬虫抓取效率的关键因素之一。一个清晰、逻辑合理的网站结构&#xff0c;不仅能让用户更方便地找到他们需要的信息&#xff0c;还能提升搜索引擎的抓取效率 理想的网站结构应该像一棵树&#xff0c;…

每日Attention学习20——Group Shuffle Attention

模块出处 [MICCAI 24] [link] LB-UNet: A Lightweight Boundary-Assisted UNet for Skin Lesion Segmentation 模块名称 Group Shuffle Attention (GSA) 模块作用 轻量特征学习 模块结构 模块特点 使用分组(Group)卷积降低计算量引入External Attention机制更好的学习特征S…

VUE之组件通信(二)

1、v-model v-model的底层原理&#xff1a;是:value值和input事件的结合 $event到底是啥&#xff1f;啥时候能.target 对于原生事件&#xff0c;$event就是事件对象 &#xff0c;能.target对应自定义事件&#xff0c;$event就是触发事件时&#xff0c;所传递的数据&#xff…

[x86 ubuntu22.04]进入S4失败

目录 1 问题描述 2 解决过程 2.1 查看内核日志 2.2 新建一个交换分区 2.3 指定交换分区的位置 1 问题描述 CPU&#xff1a;G6900E OS&#xff1a;ubuntu22.04 Kernel&#xff1a;6.8.0-49-generic 使用“echo disk > /sys/power/state”命令进入 S4&#xff0c;但是无法…

idea隐藏无关文件

idea隐藏无关文件 如果你想隐藏某些特定类型的文件&#xff08;例如 .log 文件或 .tmp 文件&#xff09;&#xff0c;可以通过以下步骤设置&#xff1a; 打开设置 在菜单栏中选择 File > Settings&#xff08;Windows/Linux&#xff09;或 IntelliJ IDEA > Preference…

文献阅读 250205-Global patterns and drivers of tropical aboveground carbon changes

Global patterns and drivers of tropical aboveground carbon changes 来自 <Global patterns and drivers of tropical aboveground carbon changes | Nature Climate Change> 热带地上碳变化的全球模式和驱动因素 ## Abstract: Tropical terrestrial ecosystems play …

【数据结构】循环链表

循环链表 单链表局限性单向循环链表判断链表是否有环思路code 找到链表入口思路代码结构与逻辑 code 单链表局限性 单链表作为一种基本的数据结构&#xff0c;虽然在很多场景下都非常有用&#xff0c;但它也存在一些局限性&#xff1a; 单向访问&#xff1a;由于每个节点仅包含…

ImGui 学习笔记(二)—— 多视口

在计算机图形学中&#xff0c;视口&#xff08;Viewport&#xff09;是一个可观察的多边形区域。 将物体渲染至图像的过程中&#xff0c;会用两种区域表示。世界坐标窗口是用户所关注的区域&#xff08;即用户想要可视化的东西&#xff09;&#xff0c;坐标系由应用程序确定。…

安装和卸载RabbitMQ

我的飞书:https://rvg7rs2jk1g.feishu.cn/docx/SUWXdDb0UoCV86xP6b3c7qtMn6b 使用Ubuntu环境进行安装 一、安装Erlang 在安装RabbitMQ之前,我们需要先安装Erlang,RabbitMQ需要Erlang的语言支持 #安装Erlang sudo apt-get install erlang 在安装的过程中,会弹出一段信息,此…