D. Vessels

news2025/2/5 10:26:37

题目链接:Problem - 371D - Codeforces

题目大意:有n层容器用来装水, 当一层的水满了,就会向下溢出,进入下一层,最后一层的溢出将会在地上。现有两种操作   1.在p层的容器里加入x升水。 2.查询p层的水量为多少。

输入:

第一行包含整数 n --数量( 1 ≤ n ≤ 2·1e5 )。第二行包含 n 个整数 a1, a2, ..., an - 容量( 1 ≤ ai ≤ 1e9 )。从顶部到底部。第三行包含整数 m - 查询次数( 1 ≤ m ≤ 2·1e5 )。接下来的每行 m 包含一个查询的描述。第一类查询用" 1 pi xi "表示,第二类查询用" 2 ki "表示( 1 ≤ pi ≤ n , 1 ≤ xi ≤ 1e9 , 1 ≤ ki ≤ n )。

并查集

1.从题目可以看出,当水满了过后将会向下溢出,如果单纯的模拟水溢出的过程,很明显时间复杂度将会过高。

2.降低时间复杂度:通过模拟看出在当一个容器 i 满了过后, 如果在它上面的容器 i-1溢出了,可以避开容器 i 直接进入i+1容器的话,便可以降低时间复杂度。 当一个区间[L, R]里的所有容器都满了在L-1的容器溢出如果可以快速的找到第R+1个容器,那么时间复杂度将会减小的更多。

3.方法,并查集, 该算法的每个联通块都会维护一个根节点,如果将满了的[L,R]容器联通起来,维护一个最大的(也就是最下面的一层R层)。如果在L-1溢出,那么可以快速跳到 R 层。

注意:当满了过后 下一层即 p+1 , p <= n 即可限制住水溢出在地上。

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using i128 = __int128;
using ui64 = unsigned long long;

const int N = 2e5+9;
int tree[N];
i64 a[N], w[N];
int n;
//路径压缩,将满了的层数合并在一起
//注意此处让层数越大的作为根节点。
int find(int x) {
    if(x != tree[x]) {
        int fx = find(tree[x]);
        tree[x] = fx;
    }
    return tree[x];
}

void go(int p, i64 x){
    w[p] += x;//加水

    while(p <= n && w[p] > a[p]) {
        int fp = find(p);
        tree[find(p-1)] = fp;//当下次倒水时在p-1层时,可以快速找到未满的一层
        int ff = fp+1;//倒入下一层
        w[ff] += w[p] - a[p];
        w[p] = a[p];
        p = ff;//检测下一层是否溢出
    }
}

int main(){
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);

    cin >> n;
    for(int i=1; i<=n; i++) {
        cin >> a[i];
        tree[i] = i;
    }

    int q;
    cin >> q;
    while(q--) {
        int op;
        cin >> op;
        if(op==1) {
            int p, x;
            cin >> p >> x;
            go(p, x);
        }else{
            int p;
            cin >> p;
            cout << w[p] << "\n";
        }
    }
    return 0;
}

感谢你的收看与点赞, 欢迎大佬的指正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2292261.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue声明周期及其作用

vue声明周期及其作用 1. 生命周期总览 2. beforeCreate 我们在new Vue()时&#xff0c;初始化一个Vue空的实例对象&#xff0c;此时对象身上只有默认的声明周期函数和事件&#xff0c;此时data,methods都未被初始化 3. created 此时&#xff0c;已经完成数据观测&#xff0…

安全策略实验

安全策略实验 1.拓扑图 2.需求分析 需求&#xff1a; 1.VLAN 2属于办公区&#xff0c;VLAN 3属于生产区 2.办公区PC在工作日时间&#xff08;周一至周五&#xff0c;早8到晚6&#xff09;可以正常访问OA server其他时间不允许 3.办公区PC可以在任意时刻访问Web Server 4.生产…

蓝桥杯C语言组:暴力破解

基于C语言的暴力破解方法详解 暴力破解是一种通过穷举所有可能的解来找到正确答案的算法思想。在C语言中&#xff0c;暴力破解通常用于解决那些问题规模较小、解的范围有限的问题。虽然暴力破解的效率通常较低&#xff0c;但它是一种简单直接的方法&#xff0c;适用于一些简单…

七. Redis 当中 Jedis 的详细刨析与使用

七. Redis 当中 Jedis 的详细刨析与使用 文章目录 七. Redis 当中 Jedis 的详细刨析与使用1. Jedis 概述2. Java程序中使用Jedis 操作 Redis 数据2.1 Java 程序使用 Jedis 连接 Redis 的注意事项2.2 Java程序通过 Jedis当中操作 Redis 的 key 键值对2.3 Java程序通过 Jedis 当中…

NLP深度学习 DAY5:Sequence-to-sequence 模型详解

Seq2Seq&#xff08;Sequence-to-Sequence&#xff09;模型是一种用于处理输入和输出均为序列任务的深度学习模型。它最初被设计用于机器翻译&#xff0c;但后来广泛应用于其他任务&#xff0c;如文本摘要、对话系统、语音识别、问答系统等。 核心思想 Seq2Seq 模型的目标是将…

04树 + 堆 + 优先队列 + 图(D1_树(D17_综合刷题练习))

目录 1. 二叉树的前序遍历&#xff08;简单&#xff09; 1.1. 题目描述 1.2. 解题思路 方法一&#xff1a;递归&#xff08;推荐使用&#xff09; 方法二&#xff1a;非递归&#xff08;扩展思路&#xff09; 2. 二叉树的中序遍历&#xff08;中等&#xff09; 2.1. 题目…

总结11..

#include <stdio.h> #include <string.h> #define MAXN 1001 #define MAXM 1000001 int n, m; char maze[MAXN][MAXN]; int block[MAXN][MAXN]; // 标记每个格子所属的连通块编号 int blockSize[MAXN * MAXN]; // 记录每个连通块的大小 int dx[] {0, 0, 1, -1};…

35.Word:公积金管理中心文员小谢【37】

目录 Word1.docx ​ Word2.docx Word2.docx ​ 注意本套题还是与上一套存在不同之处 Word1.docx 布局样式的应用设计页眉页脚位置在水平/垂直方向上均相对于外边距居中排列&#xff1a;格式→大小对话框→位置→水平/垂直 按下表所列要求将原文中的手动纯文本编号分别替换…

FinRobot:一个使用大型语言模型的金融应用开源AI代理平台

“FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models” 论文地址&#xff1a;https://arxiv.org/pdf/2405.14767 Github地址&#xff1a;https://github.com/AI4Finance-Foundation/FinRobot 摘要 在金融领域与AI社区间&a…

C基础寒假练习(2)

一、输出3-100以内的完美数&#xff0c;(完美数&#xff1a;因子和(因子不包含自身)数本身 #include <stdio.h>// 函数声明 int isPerfectNumber(int num);int main() {printf("3-100以内的完美数有:\n");for (int i 3; i < 100; i){if (isPerfectNumber…

【网络】应用层协议http

文章目录 1. 关于http协议2. 认识URL3. http协议请求与响应格式3.1 请求3.2 响应 3. http的常见方法4. 状态码4.1 常见状态码4.2 重定向 5. Cookie与Session5.1 Cookie5.1.1 认识Cookie5.1.2 设置Cookie5.1.3 Cookie的生命周期 5.2 Session 6. HTTP版本&#xff08;了解&#x…

React+AI 技术栈(2025 版)

文章目录 核心&#xff1a;React TypeScript元框架&#xff1a;Next.js样式设计&#xff1a;Tailwind CSSshadcn/ui客户端状态管理&#xff1a;Zustand服务器状态管理&#xff1a;TanStack Query动画效果&#xff1a;Motion测试工具表格处理&#xff1a;TanStack Table表单处理…

计算机从何而来?计算技术将向何处发展?

计算机的前生&#xff1a;机械计算工具的演进 算盘是计算机的起点&#xff0c;它其实是一台“机械式半自动化运算器”。打算盘的“口诀”其实就是它的编程语言&#xff0c;算盘珠就是它的存储器。 第二阶段是可以做四则运算的加法器、乘法器。1642年&#xff0c;法国数学家帕斯…

Docker使用指南(二)——容器相关操作详解(实战案例教学,创建/使用/停止/删除)

目录 1.容器操作相关命令​编辑 案例一&#xff1a; 案例二&#xff1a; 容器常用命令总结&#xff1a; 1.查看容器状态&#xff1a; 2.删除容器&#xff1a; 3.进入容器&#xff1a; 二、Docker基本操作——容器篇 1.容器操作相关命令 下面我们用两个案例来具体实操一…

从通讯工具到 AI 助理,AI手机如何发展?

随着AI进军各行各业&#xff0c;全面AI化时代已经到来。手机&#xff0c;作为现代人类的“数字器官”之一&#xff0c;更是首当其冲地融入了这一变革浪潮之中。 2024年年初&#xff0c;OPPO联合IDC发布了《AI手机白皮书》&#xff0c;公布OPPO已迈向AI手机这一全新阶段。到如今…

小程序-基础加强

前言 这一节把基础加强讲完 1. 导入需要用到的小程序项目 2. 初步安装和使用vant组件库 这里还可以扫描二维码 其中步骤四没什么用 右键选择最后一个 在开始之前&#xff0c;我们的项目根目录得有package.json 没有的话&#xff0c;我们就初始化一个 但是我们没有npm这个…

【CSS】谈谈你对BFC的理解

理解 CSS 中的 BFC&#xff08;块格式化上下文&#xff09; 在 CSS 中&#xff0c;BFC&#xff08;Block Formatting Context&#xff09; 是一个非常重要的概念&#xff0c;它决定了元素如何对其子元素进行定位&#xff0c;以及与其他元素的关系。理解 BFC 对于解决常见的布局…

【Uniapp-Vue3】iconfont图标库的使用

先在iconfont图标库中将需要的图标加入购物车 点击右侧购物车的图标 点击添加至项目&#xff0c;可以选中项目进行加入&#xff0c;也可以点击文件加号创建一个新的项目并添加 加入以后会来到如下界面&#xff0c;点击下载至本地 双击打开下载的.zip文件 将.css和.ttf文件进…

Linux find 命令 | grep 命令 | 查找 / 列出文件或目录路径 | 示例

注&#xff1a;本文为 “Linux find 命令 | grep 命令使用” 相关文章合辑。 未整理去重。 如何在 Linux 中查找文件 作者&#xff1a; Lewis Cowles 译者&#xff1a; LCTT geekpi | 2018-04-28 07:09 使用简单的命令在 Linux 下基于类型、内容等快速查找文件。 如果你是 W…

Day 28 卡玛笔记

这是基于代码随想录的每日打卡 77. 组合 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 示例 1&#xff1a; 输入&#xff1a;n 4, k 2 输出&#xff1a; [[2,4],[3,4],[2,3],[1,2],[1,3],[1,4], ]示例 2…