Golang 并发机制-5:详解syn包同步原语

news2025/2/5 8:59:28

并发性是现代软件开发的一个基本方面,Go(也称为Golang)为并发编程提供了一组健壮的工具。Go语言中用于管理并发性的重要包之一是“sync”包。在本文中,我们将概述“sync”包,并深入研究其最重要的同步原语之一:Wait
Groups.

sync 包概述

sync包是Go中的一个标准库包,为并发编程提供同步原语。它为开发人员提供了协调和同步程序的工具,确保安全有序地执行并发任务。sync包提供的一些关键同步原语包括Mutexes, RWMutexes, Cond, Wait Groups。

Wait Groups

Wait Group是由Go中的“sync”包提供的同步原语。它是一个简单但功能强大的工具,用于管理goroutine的同步,特别是当你希望等待一组goroutine在继续之前完成它们的任务时。

当有多个并发执行独立任务的goroutine,并且你需要确保它们在继续执行主程序之前都已完成执行时,等待组是有用的。
在这里插入图片描述

让我们通过一个代码示例来探索如何使用Wait Groups:

package main

import (
	"fmt"
	"sync"
	"time"
)

func worker(id int, wg *sync.WaitGroup) {
	defer wg.Done() // Decrement the Wait Group counter when done
	fmt.Printf("Worker %d is working\n", id)
	time.Sleep(time.Second)
	fmt.Printf("Worker %d has finished\n", id)
}

func main() {
	var wg sync.WaitGroup

	for i := 1; i <= 3; i++ {
		wg.Add(1) // Increment the Wait Group counter for each Goroutine
		go worker(i, &wg)
	}

	wg.Wait() // Wait for all Goroutines to finish
	fmt.Println("All workers have finished.")
}

在这个例子中,我们定义了一个worker函数,它通过睡眠一秒钟来模拟工作。我们启动三个goroutine,每个代表一个worker,并使用sync。来协调他们的执行。

  • wg.Add(1)在启动每个例程之前增加等待组计数器。
  • wg.Done()worker函数中被延迟,以在gooutine完成其工作时减少计数器。
  • wg.Wait()阻塞主程序,直到所有的例程都完成,确保我们等待所有工人的完成。

RWMutex

RWMutex(读写互斥)是Go语言中的一个同步原语,它允许多个线程同时读取共享数据,同时确保对写入的独占访问。它在经常读取数据但不经常修改数据的场景中非常有用。

下面是一个演示如何使用RWMutex的简单示例:

package main

import (
	"fmt"
	"sync"
	"time"
)

var (
	data        int
	dataMutex   sync.RWMutex
)

func readData() int {
	dataMutex.RLock() // Read Lock
	defer dataMutex.RUnlock()
	return data
}

func writeData(value int) {
	dataMutex.Lock() // Write Lock
	defer dataMutex.Unlock()
	data = value
}

func main() {
	// Read data concurrently
	for i := 1; i <= 5; i++ {
		go func() {
			fmt.Println("Read Data:", readData())
		}()
	}

	// Write data
	writeData(42)

	time.Sleep(time.Second)
}

在这个例子中,多个Goroutine并发地读取共享的“数据”,并且一个单独的Goroutine写入它。RWMutex确保多个读取器可以同时访问数据,但一次只有一个写入器可以修改数据。

什么是条件变量?

在 Go 语言里,条件变量(sync.Cond)是一种同步原语,它用于协调多个 goroutine 的执行顺序,尤其是在某个条件满足时唤醒等待的 goroutine。条件变量通常和互斥锁(sync.Mutexsync.RWMutex)一起使用,互斥锁用于保护共享资源,而条件变量则用于在共享资源的状态发生变化时通知等待的 goroutine。

主要特性
1. 等待(Wait)

Cond.Wait() 方法会让当前 goroutine 进入等待状态,并且会自动释放与之关联的互斥锁。当其他 goroutine 调用 Cond.Signal()Cond.Broadcast() 唤醒它时,该 goroutine 会重新获取互斥锁并继续执行。

2. 单发通知(Signal)

Cond.Signal() 方法会唤醒一个正在等待该条件变量的 goroutine。如果有多个 goroutine 在等待,它会选择其中一个进行唤醒。

3. 广播通知(Broadcast)

Cond.Broadcast() 方法会唤醒所有正在等待该条件变量的 goroutine。

条件变量(Condition Variables)是同步原语,它允许程序在继续之前等待特定条件变为真。当你需要根据特定条件协调多个goroutine的执行时,它们很有帮助。

下面是一个说明条件变量使用的基本示例:

package main

import (
	"fmt"
	"sync"
	"time"
)

var (
	conditionMutex sync.Mutex
	condition      *sync.Cond
	isReady        bool
)

func waitForCondition() {
	conditionMutex.Lock()
	defer conditionMutex.Unlock()

	for !isReady {
		fmt.Println("Waiting for the condition...")
		condition.Wait()
	}
	fmt.Println("Condition met, proceeding.")
}

func setCondition() {
	time.Sleep(2 * time.Second)
	conditionMutex.Lock()
	isReady = true
	condition.Signal() // Signal one waiting Goroutine
	conditionMutex.Unlock()
}

func main() {
	condition = sync.NewCond(&conditionMutex)

	go waitForCondition()
	go setCondition()

	time.Sleep(5 * time.Second)
}

在这个例子中,一个Goroutine使用condition. wait()等待条件变为真,而另一个Goroutine将条件设置为true,并使用condition. signal()向等待的Goroutine发出信号。

下面是一个简单的示例,模拟生产者 - 消费者模型,使用条件变量来协调生产者和消费者的行为:

package main

import (
    "fmt"
    "sync"
    "time"
)

// 定义一个缓冲区和相关的锁与条件变量
var (
    buffer    []int
    bufferLen = 5
    mutex     sync.Mutex
    cond      = sync.NewCond(&mutex)
)

// 生产者函数
func producer(id int) {
    for {
        mutex.Lock()
        // 检查缓冲区是否已满
        for len(buffer) == bufferLen {
            fmt.Printf("Producer %d is waiting as buffer is full...\n", id)
            cond.Wait() // 缓冲区满,等待消费者消费
        }
        // 生产一个元素
        item := len(buffer) + 1
        buffer = append(buffer, item)
        fmt.Printf("Producer %d produced item %d. Buffer: %v\n", id, item, buffer)
        cond.Signal() // 通知可能正在等待的消费者
        mutex.Unlock()
        time.Sleep(time.Second)
    }
}

// 消费者函数
func consumer(id int) {
    for {
        mutex.Lock()
        // 检查缓冲区是否为空
        for len(buffer) == 0 {
            fmt.Printf("Consumer %d is waiting as buffer is empty...\n", id)
            cond.Wait() // 缓冲区空,等待生产者生产
        }
        // 消费一个元素
        item := buffer[0]
        buffer = buffer[1:]
        fmt.Printf("Consumer %d consumed item %d. Buffer: %v\n", id, item, buffer)
        cond.Signal() // 通知可能正在等待的生产者
        mutex.Unlock()
        time.Sleep(time.Second)
    }
}

func main() {
    // 启动生产者和消费者 goroutine
    go producer(1)
    go consumer(1)

    // 让程序运行一段时间
    time.Sleep(10 * time.Second)
}

通过使用条件变量,生产者和消费者能够在合适的时机进行等待和唤醒,确保缓冲区不会溢出或空消费。

原子操作

原子操作(Atomic Operations )是作为单个、不可分割的工作单元执行的操作。它们通常用于在不需要互斥锁的情况下安全地更新并发程序中的共享变量。Go为原子操作提供了一个名为“atomic”的包。

下面是演示原子操作的例子:

package main

import (
	"fmt"
	"sync"
	"sync/atomic"
	"time"
)

var (
	counter int32
	wg      sync.WaitGroup
)

func incrementCounter() {
	defer wg.Done()
	for i := 0; i < 100000; i++ {
		atomic.AddInt32(&counter, 1)
	}
}

func main() {
	wg.Add(2)
	go incrementCounter()
	go incrementCounter()
	wg.Wait()

	fmt.Println("Counter:", atomic.LoadInt32(&counter))
}

在这个例子中,两个线程使用原子操作增加共享的“计数器”变量。atomic.AddInt32函数确保增量操作是原子性的,并且对于并发访问是安全的。

选择正确的同步机制

在选择正确的同步机制时,请考虑以下指导原则:

  • 当需要细粒度的访问控制时,互斥锁(RWMutex用于读,Mutex用于写)适用于保护共享数据。
  • 当需要根据特定条件协调程序时,条件变量很有价值。
  • 当希望避免互斥锁的开销时,原子操作对于对共享变量进行简单操作是有效的。
  • 始终选择最适合您特定用例需求的同步机制。

总之,Go在“sync”包和原子操作中提供了一套通用的同步机制,用于管理对共享资源的并发访问。了解这些工具并根据您的并发需求选择合适的工具对于编写高效可靠的并发Go程序至关重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2292218.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

排序算法与查找算法

1.十大经典排序算法 我们希望数据以一种有序的形式组织起来&#xff0c;无序的数据我们要尽量将其变得有序 一般说来有10种比较经典的排序算法 简单记忆为Miss D----D小姐 时间复杂度 &#xff1a;红色<绿色<蓝色 空间复杂度&#xff1a;圆越大越占空间 稳定性&…

数据结构课程设计(三)构建决策树

3 决策树 3.1 需求规格说明 【问题描述】 ID3算法是一种贪心算法&#xff0c;用来构造决策树。ID3算法起源于概念学习系统&#xff08;CLS&#xff09;&#xff0c;以信息熵的下降速度为选取测试属性的标准&#xff0c;即在每个节点选取还尚未被用来划分的具有最高信息增益的…

python-leetcode-二叉树的层序遍历

102. 二叉树的层序遍历 - 力扣&#xff08;LeetCode&#xff09; # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right from coll…

毕业设计:基于深度学习的高压线周边障碍物自动识别与监测系统

目录 前言 课题背景和意义 实现技术思路 一、算法理论基础 1.1 卷积神经网络 1.2 目标检测算法 1.3 注意力机制 二、 数据集 2.1 数据采集 2.2 数据标注 三、实验及结果分析 3.1 实验环境搭建 3.2 模型训练 3.2 结果分析 最后 前言 &#x1f4c5;大四是整个大学…

【Hadoop】Hadoop的HDFS

这里写目录标题 HDFS概述HDFS产出背景及定义HDFS产生背景HDFS定义 HDFS优缺点HDFS优点HDFS缺点 HDFS组成架构HDFS文件块大小 HDFS的Shell操作常用命令实操准备工作上传下载HDFS直接操作 HDFS的API操作客户端环境准备HDFS的API案例实操HDFS文件上传HDFS文件下载HDFS文件更名和移…

C++ Primer 迭代器

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…

简单介绍一下什么是OpenFeign

OpenFeign是什么&#xff1f; OpenFeign是一个声明式的Http客户端&#xff0c;它可以用来发起Http请求 它主要用于SpringCloud微服务之间的通讯&#xff0c;让调用另一个服务的Java方法和调用本地方法一样快速和便捷 之前我们是用RestTemplate写一大堆东西发起Http请求远程调…

力扣动态规划-20【算法学习day.114】

前言 ###我做这类文章一个重要的目的还是记录自己的学习过程&#xff0c;我的解析也不会做的非常详细&#xff0c;只会提供思路和一些关键点&#xff0c;力扣上的大佬们的题解质量是非常非常高滴&#xff01;&#xff01;&#xff01; 习题 1.网格中的最小路径代价 题目链接…

Codeforces Round 1002 (Div. 2)(部分题解)

补题链接 A. Milya and Two Arrays 思路&#xff1a;题意还是比较好理解&#xff0c;分析的话我加了一点猜的成分&#xff0c;对a&#xff0c;b数组的种类和相加小于4就不行&#xff0c;蒋老师的乘完后小于等于2也合理。 AC代码&#xff1a; #include <bits/stdc.h> u…

在线销售数据集分析:基于Python的RFM数据分析方法实操训练

一、前言 个人练习&#xff0c;文章用于记录自己的学习练习过程&#xff0c;分享出来和大家一起学习。 数据集&#xff1a;在线销售数据集 分析方法&#xff1a;RFM分析方法 二、过程 1.1 库的导入与一些必要的初始设置 import pandas as pd import datetime import matplo…

小程序设计和开发:要如何明确目标和探索用户需求?

一、明确小程序的目标 确定业务目标 首先&#xff0c;需要明确小程序所服务的业务领域和目标。例如&#xff0c;是一个电商小程序&#xff0c;旨在促进商品销售&#xff1b;还是一个服务预约小程序&#xff0c;方便用户预订各类服务。明确业务目标有助于确定小程序的核心功能和…

【C语言深入探索】:指针高级应用与极致技巧(二)

目录 一、指针与数组 1.1. 数组指针 1.2. 指向多维数组的指针 1.2.1. 指向多维数组元素的指针 1.2.2. 指向多维数组行的指针 1.3. 动态分配多维数组 1.4. 小结 二、指针与字符串 2.1. 字符串表示 2.2. 字符串处理函数 2.3. 代码示例 2.4. 注意事项 三、指针与文件…

手写MVVM框架-构建虚拟dom树

MVVM的核心之一就是虚拟dom树&#xff0c;我们这一章节就先构建一个虚拟dom树 首先我们需要创建一个VNode的类 // 当前类的位置是src/vnode/index.js export default class VNode{constructor(tag, // 标签名称&#xff08;英文大写&#xff09;ele, // 对应真实节点children,…

【Blazor学习笔记】.NET Blazor学习笔记

我是大标题 我学习Blazor的顺序是基于Blazor University&#xff0c;然后实际内容不完全基于它&#xff0c;因为它的例子还是基于.NET Core 3.1做的&#xff0c;距离现在很遥远了。 截至本文撰写的时间&#xff0c;2025年&#xff0c;最新的.NET是.NET9了都&#xff0c;可能1…

C++11中的bind

官方文档对于bind接口的概述解释&#xff1a;Bind function arguments 在C11中&#xff0c;std::bind 是一个非常有用的工具&#xff0c;用于将函数、成员函数或函数对象与特定的参数绑定在一起&#xff0c;生成一个新的可调用对象。std::bind 可以用于部分应用函数参数、改变…

鼠标拖尾特效

文章目录 鼠标拖尾特效一、引言二、实现原理1、监听鼠标移动事件2、生成拖尾元素3、控制元素生命周期 三、代码实现四、使用示例五、总结 鼠标拖尾特效 一、引言 鼠标拖尾特效是一种非常酷炫的前端交互效果&#xff0c;能够为网页增添独特的视觉体验。它通常通过JavaScript和C…

金山打字游戏2010绿色版,Win7-11可用DxWnd完美运行

金山打字游戏2010绿色版&#xff0c;Win7-11可用DxWnd完美运行 链接&#xff1a;https://pan.xunlei.com/s/VOIAYCzmkbDfdASGJa_uLjquA1?pwd67vw# 进入游戏后&#xff0c;如果输入不了英文字母&#xff08;很可能是中文输入状态&#xff09;&#xff0c;就按一下“Shift”键…

爬虫学习笔记之Robots协议相关整理

定义 Robots协议也称作爬虫协议、机器人协议&#xff0c;全名为网络爬虫排除标准&#xff0c;用来告诉爬虫和搜索引擎哪些页面可以爬取、哪些不可以。它通常是一个叫做robots.txt的文本文件&#xff0c;一般放在网站的根目录下。 robots.txt文件的样例 对有所爬虫均生效&#…

(10) 如何获取 linux 系统上的 TCP 、 UDP 套接字的收发缓存的默认大小,以及代码范例

&#xff08;1&#xff09; 先介绍下后面的代码里要用到的基础函数&#xff1a; 以及&#xff1a; &#xff08;2&#xff09; 接着给出现代版的 读写 socket 参数的系统函数 &#xff1a; 以及&#xff1a; &#xff08;3&#xff09; 给出 一言的 范例代码&#xff0c;获取…

【玩转 Postman 接口测试与开发2_016】第13章:在 Postman 中实现契约测试(Contract Testing)与 API 接口验证(上)

《API Testing and Development with Postman》最新第二版封面 文章目录 第十三章 契约测试与 API 接口验证1 契约测试的概念2 契约测试的工作原理3 契约测试的分类4 DeepSeek 给出的契约测试相关背景5 契约测试在 Postman 中的创建方法6 API 实例的基本用法7 API 实例的类型实…