Python | Pytorch | Tensor知识点总结

news2025/2/2 17:49:25

如是我闻: Tensor 是我们接触Pytorch了解到的第一个概念,这里是一个关于 PyTorch Tensor 主题的知识点总结,涵盖了 Tensor 的基本概念、创建方式、运算操作、梯度计算和 GPU 加速等内容。


1. Tensor 基本概念

  • Tensor 是 PyTorch 的核心数据结构,类似于 NumPy 的 ndarray,但支持 GPU 加速和自动求导。
  • PyTorch 的 Tensor 具有 动态计算图,可用于深度学习模型的前向传播和反向传播。

PyTorch Tensor vs. NumPy Array

特性PyTorch TensorNumPy Array
支持 GPU
自动求导✅ (requires_grad=True)
兼容性✅ (可转换为 NumPy)✅ (可转换为 Tensor)

2. Tensor 创建方式

2.1 直接创建 Tensor

import torch

# 从列表创建
a = torch.tensor([1, 2, 3])
b = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float32)

print(a, a.dtype)  # 默认 int64
print(b, b.dtype)  # float32

2.2 常见初始化方法

# 全零/全一 Tensor
x = torch.zeros((3, 3))
y = torch.ones((2, 2))

# 随机初始化
z = torch.rand((3, 3))  # [0, 1) 均匀分布
n = torch.randn((2, 2)) # 标准正态分布

# 单位矩阵
I = torch.eye(3)

# 创建指定范围的 Tensor
r = torch.arange(0, 10, 2)  # [0, 2, 4, 6, 8]
l = torch.linspace(0, 1, 5) # [0.0, 0.25, 0.5, 0.75, 1.0]

2.3 通过 NumPy 互转

import numpy as np

# NumPy -> PyTorch
np_array = np.array([[1, 2], [3, 4]])
tensor_from_np = torch.from_numpy(np_array)

# PyTorch -> NumPy
tensor = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
np_from_tensor = tensor.numpy()

3. Tensor 形状操作

3.1 维度变换

x = torch.randn(2, 3, 4)

# 改变形状
y = x.view(6, 4)   # 使用 view 改变形状 (必须保证数据连续存储)
z = x.reshape(6, 4)  # reshape 不受数据存储方式限制

# 维度扩展
x_exp = x.unsqueeze(0)  # 在第 0 维添加一个维度
x_squeeze = x_exp.squeeze(0)  # 去除维数为 1 的维度

3.2 维度交换

x = torch.rand(2, 3, 4)

x_t = x.permute(2, 0, 1)  # 交换维度
x_t2 = x.transpose(1, 2)  # 交换 1 和 2 维

4. Tensor 运算

4.1 逐元素运算

x = torch.tensor([1, 2, 3])
y = torch.tensor([4, 5, 6])

# 逐元素运算
add = x + y  # 或 torch.add(x, y)
sub = x - y  # 或 torch.sub(x, y)
mul = x * y  # 或 torch.mul(x, y)
div = x / y  # 或 torch.div(x, y)

# 指数、对数、幂运算
exp = torch.exp(x)
log = torch.log(y)
pow_2 = x.pow(2)  # 平方

4.2 线性代数运算

A = torch.tensor([[1, 2], [3, 4]])
B = torch.tensor([[5, 6], [7, 8]])

# 矩阵乘法
C = torch.mm(A, B)  # 矩阵乘法
D = A @ B  # 矩阵乘法 (等价于 mm)

# 逆矩阵
A_inv = torch.inverse(A.float())

# 计算特征值和特征向量
eigenvalues, eigenvectors = torch.eig(A.float(), eigenvectors=True)

4.3 统计运算

x = torch.randn(3, 3)

mean_x = x.mean()    # 均值
std_x = x.std()      # 标准差
sum_x = x.sum()      # 总和
max_x = x.max()      # 最大值
argmax_x = x.argmax() # 最大值索引

5. Tensor 计算图和自动求导

5.1 计算梯度

x = torch.tensor(2.0, requires_grad=True)

y = x**2 + 3*x + 1  # 计算 y
y.backward()  # 计算梯度

print(x.grad)  # dy/dx = 2x + 3 -> 2*2 + 3 = 7

5.2 阻止梯度计算

x = torch.tensor(2.0, requires_grad=True)

with torch.no_grad():
    y = x**2 + 3*x + 1  # 计算过程中不记录梯度

6. GPU 计算

6.1 设备选择

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

6.2 在 GPU 上创建 Tensor

x = torch.randn(3, 3, device=device)

6.3 在 CPU 和 GPU 之间转换

x_cpu = x.to("cpu")  # 移回 CPU
x_gpu = x.to("cuda")  # 移至 GPU

7. 总的来说

主题关键知识点
Tensor 创建torch.tensor()torch.zeros()torch.rand()
NumPy 互转torch.from_numpy().numpy()
形状变换.view().reshape().unsqueeze()
运算逐元素计算、矩阵运算、统计运算
自动求导requires_grad=True.backward()
GPU 加速torch.device("cuda").to("cuda")

以上

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2290873.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

90,【6】攻防世界 WEB Web_php_unserialize

进入靶场 进入靶场 <?php // 定义一个名为 Demo 的类 class Demo { // 定义一个私有属性 $file&#xff0c;默认值为 index.phpprivate $file index.php;// 构造函数&#xff0c;当创建类的实例时会自动调用// 接收一个参数 $file&#xff0c;用于初始化对象的 $file 属…

【数据分析】案例04:豆瓣电影Top250的数据分析与Web网页可视化(numpy+pandas+matplotlib+flask)

豆瓣电影Top250的数据分析与Web网页可视化(numpy+pandas+matplotlib+flask) 豆瓣电影Top250官网:https://movie.douban.com/top250写在前面 实验目的:实现豆瓣电影Top250详情的数据分析与Web网页可视化。电脑系统:Windows使用软件:PyCharm、NavicatPython版本:Python 3.…

Banana JS,一个严格子集 JavaScript 的解释器

项目地址&#xff1a;https://github.com/shajunxing/banana-js 特色 我的目标是剔除我在实践中总结的JavaScript语言的没用的和模棱两可的部分&#xff0c;只保留我喜欢和需要的&#xff0c;创建一个最小的语法解释器。只支持 JSON 兼容的数据类型和函数&#xff0c;函数是第…

2025.2.1——四、php_rce RCE漏洞|PHP框架

题目来源&#xff1a;攻防世界 php_rce 目录 一、打开靶机&#xff0c;整理信息 二、解题思路 step 1&#xff1a;PHP框架漏洞以及RCE漏洞信息 1.PHP常用框架 2.RCE远程命令执行 step 2&#xff1a;根据靶机提示&#xff0c;寻找版本漏洞 step 3&#xff1a;进行攻击…

对比DeepSeek、ChatGPT和Kimi的学术写作撰写引言能力

引言 引言部分引入研究主题&#xff0c;明确研究背景、问题陈述&#xff0c;并提出研究的目的和重要性&#xff0c;最后&#xff0c;概述研究方法和论文结构。 下面我们使用DeepSeek、ChatGPT4以及Kimi辅助引言撰写。 提示词&#xff1a; 你现在是一名[计算机理论专家]&#…

【C++篇】哈希表

目录 一&#xff0c;哈希概念 1.1&#xff0c;直接定址法 1.2&#xff0c;哈希冲突 1.3&#xff0c;负载因子 二&#xff0c;哈希函数 2.1&#xff0c;除法散列法 /除留余数法 2.2&#xff0c;乘法散列法 2.3&#xff0c;全域散列法 三&#xff0c;处理哈希冲突 3.1&…

数据密码解锁之DeepSeek 和其他 AI 大模型对比的神秘面纱

本篇将揭露DeepSeek 和其他 AI 大模型差异所在。 目录 ​编辑 一本篇背景&#xff1a; 二性能对比&#xff1a; 2.1训练效率&#xff1a; 2.2推理速度&#xff1a; 三语言理解与生成能力对比&#xff1a; 3.1语言理解&#xff1a; 3.2语言生成&#xff1a; 四本篇小结…

知识管理系统推动企业知识创新与人才培养的有效途径分析

内容概要 本文旨在深入探讨知识管理系统在现代企业中的应用及其对于知识创新与人才培养的重要性。通过分析知识管理系统的概念&#xff0c;企业可以认识到它不仅仅是信息管理的一种工具&#xff0c;更是提升整体创新能力的战略性资产。知识管理系统通过集成企业内部信息资源&a…

nth_element函数——C++快速选择函数

目录 1. 函数原型 2. 功能描述 3. 算法原理 4. 时间复杂度 5. 空间复杂度 6. 使用示例 8. 注意事项 9. 自定义比较函数 11. 总结 nth_element 是 C 标准库中提供的一个算法&#xff0c;位于 <algorithm> 头文件中&#xff0c;用于部分排序序列。它的主要功能是将…

Hot100之双指针

283移动零 题目 思路解析 那我们就把不为0的数字都放在数组前面&#xff0c;然后数组后面的数字都为0就行了 代码 class Solution {public void moveZeroes(int[] nums) {int left 0;for (int num : nums) {if (num ! 0) {nums[left] num;// left最后会变成数组中不为0的数…

DeepSeek-R1论文研读:通过强化学习激励LLM中的推理能力

DeepSeek在朋友圈&#xff0c;媒体&#xff0c;霸屏了好长时间&#xff0c;春节期间&#xff0c;研读一下论文算是时下的回应。论文原址&#xff1a;[2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning 摘要&#xff1a; 我们…

群晖Alist套件无法挂载到群晖webdav,报错【连接被服务器拒绝】

声明&#xff1a;我不是用docker安装的 在套件中心安装矿神的Alist套件后&#xff0c;想把夸克挂载到群晖上&#xff0c;方便复制文件的&#xff0c;哪知道一直报错&#xff0c;最后发现问题出在两个地方&#xff1a; 1&#xff09;挂载的路径中&#xff0c;直接填 dav &…

three.js+WebGL踩坑经验合集(6.2):负缩放,负定矩阵和行列式的关系(3D版本)

本篇将紧接上篇的2D版本对3D版的负缩放矩阵进行解读。 (6.1):负缩放&#xff0c;负定矩阵和行列式的关系&#xff08;2D版本&#xff09; 既然three.js对3D版的负缩放也使用行列式进行判断&#xff0c;那么&#xff0c;2D版的结论用到3D上其实是没毛病的&#xff0c;THREE.Li…

力扣第149场双周赛

文章目录 题目总览题目详解找到字符串中合法的相邻数字重新安排会议得到最多空余时间I 第149场双周赛 题目总览 找到字符串中合法的相邻数字 重新安排会议得到最多空余时间I 重新安排会议得到最多空余时间II 变成好标题的最少代价 题目详解 找到字符串中合法的相邻数字 思…

在线课堂小程序设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…

当卷积神经网络遇上AI编译器:TVM自动调优深度解析

从铜线到指令&#xff1a;硬件如何"消化"卷积 在深度学习的世界里&#xff0c;卷积层就像人体中的毛细血管——数量庞大且至关重要。但鲜有人知&#xff0c;一个简单的3x3卷积在CPU上的执行路径&#xff0c;堪比北京地铁线路图般复杂。 卷积的数学本质 对于输入张…

Flask 使用Flask-SQLAlchemy操作数据库

username db.Column(db.String(64), uniqueTrue, indexTrue); password db.Column(db.String(64)); 建立对应关系 如果是多对多关系就建一张表&#xff0c;关联两个表的id role_id db.Column(db.Integer, db.ForeignKey(‘roles.id’)) ‘’’ 帮助作关联查询 relati…

[EAI-023] FAST,机器人动作专用的Tokenizer,提高VLA模型的能力和训练效率

Paper Card 论文标题&#xff1a;FAST: Efficient Action Tokenization for Vision-Language-Action Models 论文作者&#xff1a;Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees, Chelsea Finn, Sergey Levine 论文链接&…

使用Pygame制作“太空侵略者”游戏

1. 前言 在 2D 游戏开发中&#xff0c;“太空侵略者”是一款入门难度适中、却能覆盖多种常见游戏机制的项目&#xff1a; 玩家控制飞船&#xff08;Player&#xff09;左右移动&#xff0c;发射子弹。敌人&#xff08;Enemy&#xff09;排列成一行或多行&#xff0c;从屏幕顶…

《逆向工程核心原理》第三~五章知识整理

查看上一章节内容《逆向工程核心原理》第一~二章知识整理 对应《逆向工程核心原理》第三章到第五章内容 小端序标记法 字节序 多字节数据在计算机内存中存放的字节顺序分为小端序和大端序两大类 大端序与小端序 BYTE b 0x12; WORD w 0x1234; DWORD dw 0x12345678; cha…