(笔记+作业)书生大模型实战营春节卷王班---L0G2000 Python 基础知识

news2025/2/2 12:31:40

学员闯关手册:https://aicarrier.feishu.cn/wiki/QtJnweAW1iFl8LkoMKGcsUS9nld
课程视频:https://www.bilibili.com/video/BV13U1VYmEUr/
课程文档:https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/Python
关卡作业:https://github.com/InternLM/Tutorial/blob/camp4/docs/L0/Python/task.md
开发机平台:https://studio.intern-ai.org.cn/
开发机平台介绍:https://aicarrier.feishu.cn/wiki/GQ1Qwxb3UiQuewk8BVLcuyiEnHe

在这里插入图片描述
在这里插入图片描述

Conda虚拟环境

#创建虚拟新环境,创建虚拟环境时我们主要需要设置两个参数,一是虚拟环境的名字,二是python的版本。
conda create --name myenv python=3.9
#激活环境和推出环境
conda activate myenv
conda deactivate
#查看当前设备上所有的虚拟环境
conda env list
#查看当前环境中安装了的所有包
conda list
#删除环境(比如要删除myenv)
conda env remove myenv
#创建新环境到指定目录下,和激活指定目录下的环境
conda create --prefix /root/envs/myenv python=3.9
conda activate /root/envs/myenv

使用pip安装Python三方依赖包

使用pip安装包

pip install <somepackage> # 安装单个包,<somepackage>替换成你要安装的包名
pip install pandas numpy # 安装多个包,如panda和numpy
pip install numpy==2.0 # 指定版本安装
pip install numpy>=1.19,<2.0 # 使用版本范围安装

安装requirement.txt

pip install -r requirements.txt

安装包到指定目录

# 首先激活环境
conda activate /root/share/pre_envs/pytorch2.1.2cu12.1

# 创建一个目录/root/myenvs,并将包安装到这个目录下
mkdir -p /root/myenvs
pip install <somepackage> --target /root/myenvs

# 注意这里也可以使用-r来安装requirements.txt
pip install -r requirements.txt --target /root/myenvs

#使用安装在指定目录的python包
import sys  
  
# 你要添加的目录路径  
your_directory = '/root/myenvs'  
  
# 检查该目录是否已经在 sys.path 中  
if your_directory not in sys.path:  
    # 将目录添加到 sys.path  
    sys.path.append(your_directory)  
  
# 现在你可以直接导入该目录中的模块了  
# 例如:import your_module

使用本地Vscode连接InternStudio开发机

VSCode安装Remote-SSH插件、python的插件、并进行SSH远程连接到开发机,

使用vscode连接开发机进行python debug

debug就是在程序中设置断点,一行一行运行代码,观测程序中变量的变化,然后找出并修正代码中的错误

调用书生LLM的api完成生成任务

获取api key
前往书生浦语的API文档,登陆后点击API tokens。初次使用可能会需要先填写邀请码。
https://internlm.intern-ai.org.cn/api/document
使用api

#./internlm_test.py
from openai import OpenAI
import os

client = OpenAI(
    api_key = os.getenv('api_key'),  # 此处传token,不带Bearer
    base_url="https://internlm-chat.intern-ai.org.cn/puyu/api/v1/",
)

chat_rsp = client.chat.completions.create(
    model="internlm3-latest",
    messages=[{"role": "user", "content": "hello"}],
)

for choice in chat_rsp.choices:
    print(choice.message.content)

export api_key=“填入你的api token”
python internlm_test.py
在这里插入图片描述
在这里插入图片描述

闯关任务 Leetcode 383

(笔记中提交代码与leetcode提交通过截图)
https://leetcode.cn/problems/ransom-note/description/
在这里插入图片描述
给你两个字符串:ransomNote 和 magazine ,判断 ransomNote 能不能由 magazine 里面的字符构成。
如果可以,返回 true ;否则返回 false 。
magazine 中的每个字符只能在 ransomNote 中使用一次。

class Solution:
    def canConstruct(self, ransomNote: str, magazine: str) -> bool:
        from collections import Counter
        
        # 统计 ransomNote 和 magazine 中每个字符的频率
        ransom_counter = Counter(ransomNote)
        magazine_counter = Counter(magazine)
        
        # 检查 ransomNote 中的字符是否可以由 magazine 提供
        for char, count in ransom_counter.items():
            if magazine_counter[char] < count:
                return False
        
        return True

在这里插入图片描述
代码解释:
Counter: 使用 collections.Counter 来统计 ransomNote 和 magazine 中每个字符的出现次数。

遍历 ransomNote: 遍历 ransomNote 中的字符及其数量,检查 magazine 是否有足够的字符数量。如果某个字符在 magazine 中的数量少于在 ransomNote 中的数量,则返回 False。

for char, count in ransom_counter.items():
这行代码开始一个循环,遍历ransom_counter字典中的所有键值对。
char是字典中的键,代表一个字符。
count是字典中的值,代表该字符在赎金信中出现的次数。
.items()方法返回一个包含字典所有键值对的视图对象,可以在for循环中使用。
if magazine_counter[char] < count:
这行代码检查杂志文章中该字符的出现次数是否小于赎金信中该字符的出现次数。
magazine_counter[char]获取杂志文章中该字符的出现次数。
如果杂志中的次数小于赎金信中的次数,意味着无法用杂志中的字符拼写出赎金信。

返回结果: 如果 magazine 中的所有字符都能满足 ransomNote 的需求,返回 True。

使用示例:

solution = Solution()
print(solution.canConstruct("a", "b"))  # 输出: False
print(solution.canConstruct("aa", "ab"))  # 输出: False
print(solution.canConstruct("aa", "aab"))  # 输出: True

闯关任务 Vscode连接InternStudio debug笔记

下面是一段调用书生浦语API实现将非结构化文本转化成结构化json的例子,其中有一个小bug会导致报错。请大家自行通过debug功能定位到报错原因。

报错代码

#python_debug.py
from openai import OpenAI
import json
import os
def internlm_gen(prompt,client):
    '''
    LLM生成函数
    Param prompt: prompt string
    Param client: OpenAI client 
    '''
    response = client.chat.completions.create(
        model="internlm2.5-latest",
        messages=[
            {"role": "user", "content": prompt},
      ],
        stream=False
    )
    return response.choices[0].message.content

api_key = os.getenv('api_key')
client = OpenAI(base_url="https://internlm-chat.intern-ai.org.cn/puyu/api/v1/",api_key=api_key)

content = """
书生浦语InternLM2.5是上海人工智能实验室于2024年7月推出的新一代大语言模型,提供1.8B、7B和20B三种参数版本,以适应不同需求。
该模型在复杂场景下的推理能力得到全面增强,支持1M超长上下文,能自主进行互联网搜索并整合信息。
"""
prompt = f"""
请帮我从以下``内的这段模型介绍文字中提取关于该模型的信息,要求包含模型名字、开发机构、提供参数版本、上下文长度四个内容,以json格式返回。
`{content}`
"""
res = internlm_gen(prompt,client)
res_json = json.loads(res)
print(res_json)

在这里插入图片描述

报错原因解析

在这里插入图片描述

设置断点,查看报错变量

在这里插入图片描述
‘根据提供的模型介绍文字,以下是提取的关于该模型的信息,以JSON格式返回:\n\njson\n{\n "model_name": "书生浦语InternLM2.5",\n "development_institution": "上海人工智能实验室",\n "parameter_versions": ["1.8B", "7B", "20B"],\n "context_length": "1M"\n}\n\n\n这个JSON对象包含了以下信息:\n- model_name:模型的名称,即“书生浦语InternLM2.5”。\n- development_institution:开发该模型的机构,为“上海人工智能实验室”。\n- parameter_versions:模型提供的参数版本,包括“1.8B”、“7B”和“20B”三个版本。\n- context_length:模型支持的上下文长度,为“1M”,表示模型能够处理的上下文信息长度达到1百万字符。\n\n这些信息概括了模型的基本属性和功能特点,便于快速了解该模型的关键信息。’

在这里插入图片描述

报错变量修正

在这里插入图片描述

通过提示词去除额为文本,通过 res.strip(‘json\n').strip('’)去除代码标记、换行符和缩进,

from openai import OpenAI
import json
import os
def internlm_gen(prompt,client):
    '''
    LLM生成函数
    Param prompt: prompt string
    Param client: OpenAI client 
    '''
    response = client.chat.completions.create(
        model="internlm2.5-latest",
        messages=[
            {"role": "user", "content": prompt},
      ],
        stream=False
    )
    return response.choices[0].message.content

api_key=""
client = OpenAI(base_url="https://internlm-chat.intern-ai.org.cn/puyu/api/v1/",api_key=api_key)

content = """
书生浦语InternLM2.5是上海人工智能实验室于2024年7月推出的新一代大语言模型,提供1.8B、7B和20B三种参数版本,以适应不同需求。
该模型在复杂场景下的推理能力得到全面增强,支持1M超长上下文,能自主进行互联网搜索并整合信息。
"""
prompt = f"""
请参考json格式,请帮我从以下``内的这段模型介绍文字中提取关于该模型的信息,要求包含模型名字、开发机构、提供参数只版本、上下文长度四个内容,以json格式返回,请移除额外的 Markdown 代码块标记 ````json和 ```,以及换行符\n`,不要有其他文字。
`{content}`
"""
res = internlm_gen(prompt,client)
# 移除 Markdown 代码块标记和换行符
json_str  = res.strip('```json\n').strip('```')
res_json = json.loads(json_str)
print(res_json)

在这里插入图片描述在这里插入图片描述
成功!!!

可选任务 pip安装到指定目录

使用VScode连接开发机后使用pip install -t命令安装一个numpy到看开发机/root/myenvs目录下,并成功在一个新建的python文件中引用。

# 首先激活环境
conda activate /root/share/pre_envs/pytorch2.1.2cu12.1

# 创建一个目录/root/myenvs,并将包安装到这个目录下
mkdir -p /root/myenvs
pip install numpy --t /root/myenvs

在这里插入图片描述

import sys  
  
# 你要添加的目录路径  
your_directory = '/root/myenvs'  
  
# 检查该目录是否已经在 sys.path 中  
if your_directory not in sys.path:  
    # 将目录添加到 sys.path  
    sys.path.append(your_directory)  
  
# 现在你可以直接导入该目录中的模块了  
# 例如:import your_module

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2289774.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot中Excel表的导入、导出功能的实现

文章目录 一、easyExcel简介二、Excel表的导出2.1 添加 Maven 依赖2.2 创建导出数据的实体类4. 编写导出接口5. 前端代码6. 实现效果 三、excel表的导出1. Excel表导入的整体流程1.1 配置文件存储路径 2. 前端实现2.1 文件上传组件 2.2 文件上传逻辑3. 后端实现3.1 文件上传接口…

动态规划DP 背包问题 完全背包问题(题目分析+C++完整代码)

概览检索 动态规划DP 概览&#xff08;点击链接跳转&#xff09; 动态规划DP 背包问题 概览&#xff08;点击链接跳转&#xff09; 完全背包问题 原题链接 AcWiing 3. 完全背包问题 题目描述 有 N种物品和一个容量是 V的背包&#xff0c;每种物品都有无限件可用。 第 i种物…

【cocos creator】【模拟经营】餐厅经营demo

下载&#xff1a;【cocos creator】模拟经营餐厅经营

【深度学习】softmax回归的从零开始实现

softmax回归的从零开始实现 (就像我们从零开始实现线性回归一样&#xff0c;)我们认为softmax回归也是重要的基础&#xff0c;因此(应该知道实现softmax回归的细节)。 本节我们将使用Fashion-MNIST数据集&#xff0c;并设置数据迭代器的批量大小为256。 import torch from IP…

【Redis】set 和 zset 类型的介绍和常用命令

1. set 1.1 介绍 set 类型和 list 不同的是&#xff0c;存储的元素是无序的&#xff0c;并且元素不允许重复&#xff0c;Redis 除了支持集合内的增删查改操作&#xff0c;还支持多个集合取交集&#xff0c;并集&#xff0c;差集 1.2 常用命令 命令 介绍 时间复杂度 sadd …

程序诗篇里的灵动笔触:指针绘就数据的梦幻蓝图<3>

大家好啊&#xff0c;我是小象٩(๑ω๑)۶ 我的博客&#xff1a;Xiao Xiangζั͡ޓއއ 很高兴见到大家&#xff0c;希望能够和大家一起交流学习&#xff0c;共同进步。 今天我们来对上一节做一些小补充&#xff0c;了解学习一下assert断言&#xff0c;指针的使用和传址调用…

神经网络的数据流动过程(张量的转换和输出)

文章目录 1、文本从输入到输出&#xff0c;经历了什么&#xff1f;2、数据流动过程是张量&#xff0c;如何知道张量表达的文本内容&#xff1f;3、词转为张量、张量转为词是唯一的吗&#xff1f;为什么&#xff1f;4、如何保证词张量的质量和合理性5、总结 &#x1f343;作者介…

爬取鲜花网站数据

待爬取网页&#xff1a; 代码&#xff1a; import requestsfrom lxml import etree import pandas as pdfrom lxml import html import xlwturl "https://www.haohua.com/xianhua/"header {"accept":"image/avif,image/webp,image/apng,image/sv…

vue框架技术相关概述以及前端框架整合

vue框架技术概述及前端框架整合 1 node.js 介绍&#xff1a;什么是node.js Node.js就是运行在服务端的JavaScript。 Node.js是一个事件驱动I/O服务端JavaScript环境&#xff0c;基于Google的V8引擎。 作用 1 运行java需要安装JDK&#xff0c;而Node.js是JavaScript的运行环…

数据结构 树2

文章目录 前言 一&#xff0c;二叉搜索树的高度 二&#xff0c;广度优先VS深度优先 三&#xff0c;广度优先的代码实现 四&#xff0c;深度优先代码实现 五&#xff0c;判断是否为二叉搜索树 六&#xff0c;删除一个节点 七&#xff0c;二叉收索树的中序后续节点 总结 …

NeetCode刷题第19天(2025.1.31)

文章目录 099 Maximum Product Subarray 最大乘积子数组100 Word Break 断字101 Longest Increasing Subsequence 最长递增的子序列102 Maximum Product Subarray 最大乘积子数组103 Partition Equal Subset Sum 分区等于子集和104 Unique Paths 唯一路径105 Longest Common Su…

Google Chrome-便携增强版[解压即用]

Google Chrome-便携增强版 链接&#xff1a;https://pan.xunlei.com/s/VOI0OyrhUx3biEbFgJyLl-Z8A1?pwdf5qa# a 特点描述 √ 无升级、便携式、绿色免安装&#xff0c;即可以覆盖更新又能解压使用&#xff01; √ 此增强版&#xff0c;支持右键解压使用 √ 加入Chrome增强…

[EAI-027] RDT-1B,目前最大的用于机器人双臂操作的机器人基础模型

Paper Card 论文标题&#xff1a;RDT-1B: a Diffusion Foundation Model for Bimanual Manipulation 论文作者&#xff1a;Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang Su, Jun Zhu 论文链接&#xff1a;https://arxiv.org/ab…

[EAI-028] Diffusion-VLA,能够进行多模态推理和机器人动作预测的VLA模型

Paper Card 论文标题&#xff1a;Diffusion-VLA: Scaling Robot Foundation Models via Unified Diffusion and Autoregression 论文作者&#xff1a;Junjie Wen, Minjie Zhu, Yichen Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Chengmeng Li, Xiaoyu Liu, Yaxin Peng, Chao…

DIFY源码解析

偶然发现Github上某位大佬开源的DIFY源码注释和解析&#xff0c;目前还处于陆续不断更新地更新过程中&#xff0c;为大佬的专业和开源贡献精神点赞。先收藏链接&#xff0c;后续慢慢学习。 相关链接如下&#xff1a; DIFY源码解析

hexo部署到github page时,hexo d后page里面绑定的个人域名消失的问题

Hexo 部署博客到 GitHub page 后&#xff0c;可以在 setting 中的 page 中绑定自己的域名&#xff0c;但是我发现更新博客后绑定的域名消失&#xff0c;恢复原始的 githubio 的域名。 后面搜索发现需要在 repo 里面添加 CNAME 文件&#xff0c;内容为 page 里面绑定的域名&…

【Block总结】MAB,多尺度注意力块|即插即用

文章目录 一、论文信息二、创新点三、方法MAB模块解读1、MAB模块概述2、MAB模块组成3、MAB模块的优势 四、效果五、实验结果六、总结代码 一、论文信息 标题: Multi-scale Attention Network for Single Image Super-Resolution作者: Yan Wang, Yusen Li, Gang Wang, Xiaoguan…

移动互联网用户行为习惯哪些变化,对小程序的发展有哪些积极影响

一、碎片化时间利用增加 随着生活节奏的加快&#xff0c;移动互联网用户的碎片化时间越来越多。在等公交、排队、乘坐地铁等间隙&#xff0c;用户更倾向于使用便捷、快速启动的应用来满足即时需求。小程序正好满足了这一需求&#xff0c;无需下载安装&#xff0c;随时可用&…

使用 Tauri 2 + Next.js 开发跨平台桌面应用实践:Singbox GUI 实践

Singbox GUI 实践 最近用 Tauri Next.js 做了个项目 - Singbox GUI&#xff0c;是个给 sing-box 用的图形界面工具。支持 Windows、Linux 和 macOS。作为第一次接触这两个框架的新手&#xff0c;感觉收获还蛮多的&#xff0c;今天来分享下开发过程中的一些经验~ 为啥要做这个…

攻防世界_simple_php

同类型题&#xff08;更难版->&#xff09;攻防世界_Web(easyphp)&#xff08;php代码审计/json格式/php弱类型匹配&#xff09; php代码审计 show_source(__FILE__)&#xff1a;show_source() 函数用于显示指定文件的源代码&#xff0c;并进行语法高亮显示。__FILE__ 是魔…