decison tree 决策树

news2025/2/2 2:14:39

信息增益

信息增益描述的是在分叉过程中获得的熵减,信息增益即熵减。

熵减可以用来决定什么时候停止分叉,当熵减很小的时候你只是在不必要的增加树的深度,并且冒着过拟合的风险

决策树训练(构建)过程

离散值特征处理:One-Hot编码

一个具有 N 个取值的离散特征可以转换为 N 个二进制特征,每个二进制特征对应一个可能的取值。

连续值特征处理:

计算不同阈值的熵减,选取熵减最大的阈值作为分叉阈值

回归树

回归树用来预测一个连续值,训练时跟决策树的区别是训练时最小化方差,而决策树是最大化熵减

集成树

单个决策树的一个缺点是对数据的变化比较敏感,我们需要尝试降低树的敏感度提高鲁棒性,此时我们可以构建集成树,即一组决策树

有放回抽样(sample with replacement)

从训练集中随机取出一个之后放回,确保它在后续抽取中仍有可能被再次抽到。

随机森林

利用有放回抽样,我们可以连续抽样并组成新的训练集,使用新的训练集训练一棵新的树。重复该行为可以生成多棵树,称为随机森林。

如果有 n 个特征,一般要生成  k = \sqrt{n} 棵树

XGBoost

对随机森林的提升:从第二次迭代开始,不是等概率随机抽样,而是让上一轮预测错误的样本有更大的概率被抽样到,以类似错误修正的方式训练树。

决策树与神经网络的选择

决策树在结构化数据下可用,非结构化数据不推荐;可解释

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2289566.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【AI论文】VideoAuteur:迈向长叙事视频

摘要:近期的视频生成模型在制作持续数秒的高质量视频片段方面已展现出令人鼓舞的成果。然而,这些模型在生成能传达清晰且富有信息量的长序列时面临挑战,限制了它们支持连贯叙事的能力。在本文中,我们提出了一个大规模烹饪视频数据…

循环神经网络(RNN)+pytorch实现情感分析

目录 一、背景引入 二、网络介绍 2.1 输入层 2.2 循环层 2.3 输出层 2.4 举例 2.5 深层网络 三、网络的训练 3.1 训练过程举例 1)输出层 2)循环层 3.2 BPTT 算法 1)输出层 2)循环层 3)算法流程 四、循…

Linux网络 | 网络层IP报文解析、认识网段划分与IP地址

前言:本节内容为网络层。 主要讲解IP协议报文字段以及分离有效载荷。 另外, 本节也会带领友友认识一下IP地址的划分。 那么现在废话不多说, 开始我们的学习吧!! ps:本节正式进入网络层喽, 友友们…

2025年大年初一篇,C#调用GPU并行计算推荐

C#调用GPU库的主要目的是利用GPU的并行计算能力,加速计算密集型任务,提高程序性能,支持大规模数据处理,优化资源利用,满足特定应用场景的需求,并提升用户体验。在需要处理大量并行数据或进行复杂计算的场景…

python算法和数据结构刷题[2]:链表、队列、栈

链表 链表的节点定义: class Node():def __init__(self,item,nextNone):self.itemitemself.nextNone 删除节点: 删除节点前的节点的next指针指向删除节点的后一个节点 添加节点: 单链表 class Node():"""单链表的结点&quo…

Baklib解析内容中台与人工智能技术带来的价值与机遇

内容概要 在数字化转型的浪潮中,内容中台与人工智能技术的结合为企业提供了前所未有的发展机遇。内容中台作为一种新的内容管理和生产模式,通过统一管理和协调各种内容资源,帮助企业更高效地整合内外部数据。而人工智能技术则以其强大的数据…

Flask框架基础入门教程_ezflaskapp

pip install flaskFlask 快速入门小应用 学东西,得先知道我们用这个东西,能做出来一个什么东西。 一个最小的基于flask 的应用可能看上去像下面这个样子: from flask import Flask app Flask(__name__)app.route(/) def hello_world():ret…

黑马点评 - 商铺类型缓存练习题(Redis List实现)

首先明确返回值是一个 List<ShopType> 类型那么我们修改此函数并在 TypeService 中声明 queryTypeList 方法&#xff0c;并在其实现类中实现此方法 GetMapping("list")public Result queryTypeList() {return typeService.queryTypeList();}实现此方法首先需要…

洛谷P4057 [Code+#1] 晨跑

题目链接&#xff1a;P4057 [Code#1] 晨跑 - 洛谷 | 计算机科学教育新生态 题目难度&#xff1a;普及一 题目分析&#xff1a;这道题很明显是求最大公倍数&#xff0c;写题解是为了帮助自己复习。 下面用两种方法介绍如何求最大公倍数&#xff1a; 暴力破解 #include<bits…

讯飞绘镜(ai生成视频)技术浅析(四):图像生成

1. 技术架构概述 讯飞绘镜的图像生成技术可以分为以下几个核心模块: 文本理解与视觉元素提取:解析脚本中的场景描述,提取关键视觉元素(如人物、场景、物体等)。 视觉元素生成:根据文本描述生成具体的视觉元素(如人物、场景、物体等)。 分镜画面生成:将视觉元素组合成…

FreeRTOS从入门到精通 第十五章(事件标志组)

参考教程&#xff1a;【正点原子】手把手教你学FreeRTOS实时系统_哔哩哔哩_bilibili 一、事件标志组简介 1、概述 &#xff08;1&#xff09;事件标志位是一个“位”&#xff0c;用来表示事件是否发生。 &#xff08;2&#xff09;事件标志组是一组事件标志位的集合&#x…

使用Pygame制作“俄罗斯方块”游戏

1. 前言 俄罗斯方块&#xff08;Tetris&#xff09; 是一款由方块下落、行消除等核心规则构成的经典益智游戏&#xff1a; 每次从屏幕顶部出现一个随机的方块&#xff08;由若干小方格组成&#xff09;&#xff0c;玩家可以左右移动或旋转该方块&#xff0c;让它合适地堆叠在…

deepseek大模型本机部署

2024年1月20日晚&#xff0c;中国DeepSeek发布了最新推理模型DeepSeek-R1&#xff0c;引发广泛关注。这款模型不仅在性能上与OpenAI的GPT-4相媲美&#xff0c;更以开源和创新训练方法&#xff0c;为AI发展带来了新的可能性。 本文讲解如何在本地部署deepseek r1模型。deepseek官…

常见“栈“相关题目

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a; 优选算法专题 目录 1047.删除字符串中的所有相邻重复项 844.比较含退格的字符串 227.基本计算器 II 394.字符串解码 946.验证栈序列 104…

QT实现有限元软件操作界面

本系列文章致力于实现“手搓有限元&#xff0c;干翻Ansys的目标”&#xff0c;基本框架为前端显示使用QT实现交互&#xff0c;后端计算采用Visual Studio C。 本篇将二维矩形截面梁单元&#xff08;Rect_Beam2D2Node&#xff09;组成的钢结构桥作为案例来展示软件功能。 也可以…

软件工程经济学-日常作业+大作业

目录 一、作业1 作业内容 解答 二、作业2 作业内容 解答 三、作业3 作业内容 解答 四、大作业 作业内容 解答 1.建立层次结构模型 (1)目标层 (2)准则层 (3)方案层 2.构造判断矩阵 (1)准则层判断矩阵 (2)方案层判断矩阵 3.层次单排序及其一致性检验 代码 …

Go学习:Go语言中if、switch、for语句与其他编程语言中相应语句的格式区别

Go语言中的流程控制语句逻辑结构与其他编程语言类似&#xff0c;格式有些不同。Go语言的流程控制中&#xff0c;包括if、switch、for、range、goto等语句&#xff0c;没有while循环。 目录 1. if 语句 2. switch语句 3. for语句 4. range语句 5. goto语句&#xff08;不常用…

14-8C++STL的queue容器

一、queue容器 (1)queue容器的简介 queue为队列容器&#xff0c;“先进先出”的容器 (2)queue对象的构造 queue<T>q; queue<int>que Int;//存放一个int的queue容器 queue<string>queString;//存放一个string的queue容器 (3)queue容器的push()与pop()方…

【B站保姆级视频教程:Jetson配置YOLOv11环境(四)cuda cudnn tensorrt配置】

Jetson配置YOLOv11环境&#xff08;4&#xff09;cuda cudnn tensorrt配置 文章目录 0. 简介1. cuda配置&#xff1a;添加cuda环境变量2. cudnn配置3. TensorRT Python环境配置3.1 系统自带Python环境中的TensorRT配置3.2 Conda 虚拟Python环境中的TensorRT配置 0. 简介 官方镜…

信号模块--simulink操作

位置simulink/sourses 常用的模块 功能&#xff1a;常数模块&#xff0c;提供一个常数 数据设置可以是一维或多维 一维数据设置 多维数据设置&#xff08;例三维数据设置&#xff09; 方波脉冲模块 模块用于按固定间隔生成方波脉冲信号 振幅就是方波的幅度&#xff0c;0到…