AI大模型开发原理篇-9:GPT模型的概念和基本结构

news2025/3/4 15:59:28

基本概念

生成式预训练模型 GPT(Generative Pre-trained Transformer)模型 是由 OpenAI 开发的基于 Transformer 架构的自然语言处理(NLP)模型,专门用于文本生成任务。它的设计理念在于通过大规模的预训练来学习语言模型,然后通过微调来适应特定任务。;GPT是生成式语言模型
。我们一路以来讲的N-Gram、Word2Vec、NPLM和Seq2Seq预测的都是下一个词,其本质都是生成式语言模型。

GPT架构概述(只使用解码器)

  1. 输入嵌入:输入的文本(如一句话)首先通过词嵌入层转换为向量,然后加上位置编码,以保留单词的顺序信息。

  2. 解码器堆叠:GPT使用多个解码器层进行堆叠。每个解码器层都会处理前一层的输出,并在此基础上生成更高层次的表示。

  3. 生成下一个词:解码器的输出通过softmax层转换为词汇表中每个词的概率分布,选择最大概率的词作为下一个生成的词。

GPT的基本结构

GPT模型的核心基于Transformer架构,具体来说,它使用了Transformer的解码器部分。Transformer本身由编码器(Encoder)和解码器(Decoder)组成,但GPT只采用了解码器。GPT模型的主要组件包括:

输入嵌入(Input Embedding)

  • 任何输入的文本(例如一个句子)都会先通过一个词嵌入层(Word Embedding Layer),将每个单词转换成一个固定维度的向量。
  • 这个向量通常是高维的,以捕捉词汇的语义信息。

2 位置编码(Positional Encoding)

由于Transformer没有顺序处理的特点,它通过位置编码来为每个词添加位置信息。位置编码是一个与词嵌入相加的向量,它告诉模型一个词在句子中的相对位置。

  • 位置编码的设计方式是基于正弦和余弦函数的。
  • GPT将每个词的嵌入向量与位置编码向量相加,以便模型能够理解文本中词汇的顺序。

3 多头自注意力机制(Multi-head Self-Attention)

自注意力机制是Transformer的关键特性,它允许模型在处理每个词时考虑序列中所有其他词的关系。具体来说:

  • 对于每个词,模型计算其与其他词的相关性(注意力权重),并根据这些权重重新加权每个词的表示。
  • 多头注意力将自注意力机制分成多个“头”,每个头在不同的子空间中计算注意力权重,能够捕捉到多种不同的语义信息。
  • 通过将多个注意力头的结果拼接起来,模型能够获得更丰富的上下文信息。

4 前馈神经网络(Feed-forward Neural Network)

每个Transformer解码器层中都包含一个前馈神经网络,它对每个位置的词向量进行独立的变换。这个网络包含两个线性层和一个激活函数,通常是ReLUGELU

  • 第一层将输入的向量投影到一个更大的空间,接着应用激活函数,再通过第二层将其投影回原来的维度。

5 层归一化(Layer Normalization)

每个自注意力和前馈网络的输出都通过层归一化,这有助于加速训练,并减少梯度爆炸或消失的问题。

  • 层归一化通过对每一层的输出进行标准化,使得模型的训练过程更加稳定。

6 输出层(Output Layer)

在模型的最终输出层,GPT会使用softmax函数来将模型的输出(通常是一个向量)转换成词汇表中所有词的概率分布。生成过程依赖于这个概率分布:

  • 每次生成时,模型选择概率最高的词作为输出。
  • 生成一个词后,这个词会被添加到上下文中,继续生成下一个词。

预训练(Pre-training)与微调(Fine-tuning)

  • 预训练:GPT的预训练是通过大量无标签文本数据进行的,目标是通过自回归的方式最大化下一个词的条件概率。
  • 微调:在微调阶段,GPT模型根据特定任务(如问答、情感分析等)进行训练,通过监督学习进一步优化模型参数。

GPT的关键组件总结

GPT的关键组件包括:

  1. Transformer架构:核心结构,特别是解码器部分。
  2. 自回归生成:基于前文生成下一个词,逐步生成文本。
  3. 输入嵌入和位置编码:将词汇转化为向量,保留顺序信息。
  4. 多层自注意力机制:捕捉词与词之间的全局依赖关系。
  5. 前馈神经网络和层归一化:用于提升模型的非线性表达能力和训练稳定性。
  6. 输出层和softmax:将模型输出转换为概率分布,生成最终词汇。
  7. 损失函数和优化器:通过交叉熵损失优化模型,使得模型能够正确预测下一个词。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2286992.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java Swing 基础组件详解 [论文投稿-第四届智能系统、通信与计算机网络]

大会官网:www.icisccn.net Java Swing 是一个功能强大的 GUI 工具包,提供了丰富的组件库用于构建跨平台的桌面应用程序。本文将详细讲解 Swing 的基础组件,包括其作用、使用方法以及示例代码,帮助你快速掌握 Swing 的核心知识。 一…

vscode+WSL2(ubuntu22.04)+pytorch+conda+cuda+cudnn安装系列

最近在家过年闲的没事,于是研究起深度学习开发工具链的配置和安装,之前欲与天公试比高,尝试在win上用vscodecuda11.6vs2019的cl编译器搭建cuda c编程环境,最后惨败,沦为笑柄,痛定思痛,这次直接和…

想品客老师的第九天:原型和继承

原型与继承前置看这里 原型 原型都了解了,但是不是所有对象都有对象原型 let obj1 {}console.log(obj1)let obj2 Object.create(null, {name: {value: 荷叶饭}})console.log(obj2) obj2为什么没有对象原型?obj2是完全的数据字典对象,没有…

Time Constant | RC、RL 和 RLC 电路中的时间常数

注:本文为 “Time Constant” 相关文章合辑。 机翻,未校。 How To Find The Time Constant in RC and RL Circuits June 8, 2024 💡 Key learnings: 关键学习点: Time Constant Definition: The time constant (τ) is define…

芯片AI深度实战:实战篇之vim chat

利用vim-ollama这个vim插件,可以在vim内和本地大模型聊天。 系列文章: 芯片AI深度实战:基础篇之Ollama-CSDN博客 芯片AI深度实战:基础篇之langchain-CSDN博客 芯片AI深度实战:实战篇之vim chat-CSDN博客 芯片AI深度…

Spring Boot 日志:项目的“行车记录仪”

一、什么是Spring Boot日志 (一)日志引入 在正式介绍日志之前,我们先来看看上篇文章中(Spring Boot 配置文件)中的验证码功能的一个代码片段: 这是一段校验用户输入的验证码是否正确的后端代码&#xff0c…

【QT】 控件 -- 显示类

🔥 目录 [TOC]( 🔥 目录) 1. 前言 2. 显示类控件2.1 Label 1、显示不同文本2、显示图片3、文本对齐、自动换行、缩进、边距4、设置伙伴 3.2 LCD Number 3.3 ProgressBar 3.4 Calendar Widget 3. 共勉 🔥 1. 前言 之前我在上一篇文章【QT】…

冲刺蓝桥杯之速通vector!!!!!

文章目录 知识点创建增删查改 习题1习题2习题3习题4:习题5: 知识点 C的STL提供已经封装好的容器vector,也可叫做可变长的数组,vector底层就是自动扩容的顺序表,其中的增删查改已经封装好 创建 const int N30; vecto…

小米CR6606,CR6608,CR6609 启用SSH和刷入OpenWRT 23.05.5

闲鱼上收了一台CR6606和一台CR6609, 一直没时间研究, 趁春节假期把这两个都刷成 OpenWRT 配置说明 CPU: MT7621AT,双核880MHz内存: NT5CC128M16JR-EKI 或 M15T2G16128A, 256MB闪存: F59L1G81MB, 128MB无线基带芯片(BB): T7905DAN无线射频芯片(RF): MT7975DN无外置F…

SpringCloud系列教程:微服务的未来(十八)雪崩问题、服务保护方案、Sentinel快速入门

前言 在分布式系统中,雪崩效应(Avalanche Effect)是一种常见的故障现象,通常发生在系统中某个组件出现故障时,导致其他组件级联失败,最终引发整个系统的崩溃。为了有效应对雪崩效应,服务保护方…

大数据相关职位介绍之一(数据分析,数据开发,数据产品经理,数据运营)

大数据相关职位介绍之一 随着大数据、人工智能(AI)和机器学习的快速发展,数据分析与管理已经成为各行各业的重要组成部分。从互联网公司到传统行业的数字转型,数据相关职位在中国日益成为推动企业创新和提升竞争力的关键力量。以…

无人机红外热成像:应急消防的“透视眼”

无人机红外热成像:应急消防的“透视眼” 亲爱的小伙伴们,每年一到夏天,应急消防的战士们就像上紧了发条的闹钟,时刻准备应对各种灾害。炎热天气让火灾隐患“蹭蹭”往上涨,南北各地还有防洪救灾、台风、泥石流等灾害轮…

【狂热算法篇】探秘图论之Dijkstra 算法:穿越图的迷宫的最短路径力量(通俗易懂版)

羑悻的小杀马特.-CSDN博客羑悻的小杀马特.擅长C/C题海汇总,AI学习,c的不归之路,等方面的知识,羑悻的小杀马特.关注算法,c,c语言,青少年编程领域.https://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_8264829…

AI在自动化测试中的伦理挑战

在软件测试领域,人工智能(AI)已经不再是遥不可及的未来技术,而是正在深刻影响着测试过程的现实力量。尤其是在自动化测试领域,AI通过加速测试脚本生成、自动化缺陷检测、测试数据生成等功能,极大提升了测试…

手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)

手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码) 目录 手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)Stable Diffusion 原理图Stable Diffusion的原理解释Stable Diffusion 和Di…

新版231普通阿里滑块 自动化和逆向实现 分析

声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 逆向过程 补环境逆向 部分补环境 …

HTML一般标签和自闭合标签介绍

在HTML中,标签用于定义网页内容的结构和样式。标签通常分为两类:一般标签(也称为成对标签或开放闭合标签)和自闭合标签(也称为空标签或自结束标签)。 以下是这两类标签的详细说明: 一、一般标…

Eureka 服务注册和服务发现的使用

1. 父子工程的搭建 首先创建一个 Maven 项目&#xff0c;删除 src &#xff0c;只保留 pom.xml 然后来进行 pom.xml 的相关配置 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xs…

白嫖DeepSeek:一分钟完成本地部署AI

1. 必备软件 LM-Studio 大模型客户端DeepSeek-R1 模型文件 LM-Studio 是一个支持众多流行模型的AI客户端&#xff0c;DeepSeek是最新流行的堪比GPT-o1的开源AI大模型。 2. 下载软件和模型文件 2.1 下载LM-Studio 官方网址&#xff1a;https://lmstudio.ai 打开官网&#x…

《Origin画百图》之同心环图

《Origin画百图》第四集——同心环图 入门操作可查看合集中的《30秒&#xff0c;带你入门Origin》 具体操作&#xff1a; 1.数据准备&#xff1a;需要X和Y两列数据 2. 选择菜单 绘图 > 条形图&#xff0c;饼图&#xff0c;面积图: 同心圆弧图 3. 这是绘制的基础图形&…