Time Constant | RC、RL 和 RLC 电路中的时间常数

news2025/1/31 16:20:48

注:本文为 “Time Constant” 相关文章合辑

机翻,未校。


How To Find The Time Constant in RC and RL Circuits

June 8, 2024

Time Constant In Rl And Rc Circuits

💡 Key learnings:

关键学习点:

  • Time Constant Definition: The time constant (τ) is defined as the response time of a first-order linear time-invariant (LTI) system to a step input.
    时间常数定义:时间常数(τ)定义为一阶线性时间不变(LTI)系统对阶跃输入的响应时间。
  • RC Circuit Time Constant: In an RC circuit, the time constant is the product of resistance ® and capacitance ©.
    RC 电路时间常数:在 RC 电路中,时间常数是电阻(R)和电容(C)的乘积。
  • Significance in RC Circuits: The time constant shows how long it takes for the current in a capacitor to drop to 36.7% of its initial value.
    在 RC 电路中的重要性: 时间常数显示电容器中的电流下降到其初始值的 36.7% 需要多长时间。
  • RL Circuit Time Constant: The time constant of an RL circuit is defined as the ratio of inductance (L) to resistance ®.
    RL 电路时间常数:RL 电路的时间常数定义为电感(L)与电阻(R)的比率。
  • Significance in RL Circuits: The time constant indicates how long it takes for the current in an inductor to reach 63.3% of its final value, highlighting the key concept of the “time constant of rl circuit”.
    在 RL 电路中的重要性:时间常数表示电感中的电流达到其最终值的 63.3% 所需的时间,突出了“RL 电路的时间常数”的关键概念。

What is the Time Constant?

什么是时间常数?

The time constant – usually denoted by the Greek letter τ (tau) – is used in physics and engineering to characterize the response to a step input of a first-order, linear time-invariant (LTI) control system. The time constant is the main characteristic unit of a first-order LTI system.

时间常数(通常用希腊字母 τ τ τ(tau)表示)在物理学和工程学中用于描述对一阶线性时间不变(LTI)控制系统的阶跃输入的响应。时间常数是一阶 LTI 系统的主要特征单位。

The time constant is commonly used to characterize the response of an RLC circuit.

时间常数通常用于表征 RLC 电路的响应。

Let’s derive the time constant for both RC and RL circuits to understand how they respond to changes.

让我们推导出 RC 和 RL 电路的时间常数,以了解它们如何响应变化。

Time Constant of an RC Circuit

RC 电路的时间常数

Let us take a simple RC circuit, as shown below.

让我们以一个简单的 RC 电路为例,如下所示。

RC circuit

Assume the capacitor is initially uncharged and the switch is closed at time t = 0. Once the switch is closed, electric current i(t) begins to flow through the circuit. Using Kirchhoff Voltage Law in that single mesh circuit, we get:

假设电容器最初未充电,并且开关在时间 t = 0 时闭合。一旦开关闭合,电流 i(t)开始流过电路。在单啮合电路中使用基尔霍夫电压定律,我们得到:
在这里插入图片描述

Differentiating both sides with respect to time t, we get,

根据时间 t 对两侧进行微分,我们得到,

在这里插入图片描述
在这里插入图片描述

Integrating both sides we get,

对两边进行积分,我们得到,

在这里插入图片描述
在这里插入图片描述

Now, at t = 0, the capacitor behaves as a short circuit, so, just after closing the switch, the current through the circuit will be,

现在,在 t = 0 时,电容器表现为短路,因此,在关闭开关后,通过电路的电流将为,

在这里插入图片描述

Now, putting this value in equation (I), we get,

现在,将该值放在等式(I)中,我们得到,

在这里插入图片描述

Putting the value of k at equation (I), we get,

将 k 的值放在等式(I)中,我们得到,

在这里插入图片描述

Now, if we put t = RC in the final expression of circuit current i(t), we get,

现在,如果我们将 t = RC 放在电路电流 i(t)的最终表达式中, 我们得到,

在这里插入图片描述

The equation shows that RC is the time in seconds for the current in a charging capacitor to drop to 36.7% of its initial value. The initial value is the current when the capacitor starts charging.

该方程表明 RC 是充电电容器中的电流下降到其初始值的 36.7% 的时间(以秒为单位)。初始值是电容器开始充电时的电流。

This term is quite significant in analyzing the behavior of capacitive as well as inductive circuits. This term is known as the time constant.

这个术语在分析电容电路和电感电路的行为时非常重要。这个术语被称为时间常数。

So time constant is the duration in seconds during which the current through a capacities circuit becomes 36.7 percent of its initial value. This is numerically equal to the product of resistance and capacitance value of the circuit. The time constant is normally denoted by τ (tau). So,

因此,时间常数是通过容量电路的电流变为其初始值的 36.7% 的持续时间(以秒为单位)。这在数值上等于电路的电阻和电容值的乘积。时间常数通常用 τ τ τ(tau)表示。所以

τ = R C τ = RC τ=RC

In a complex RC circuit, the time constant will be the equivalent resistance and capacitance of the circuit.

在复杂的 RC 电路中,时间常数将是电路的等效电阻和电容。

Let us discuss the significance of the time constant in more detail. To do this, let us first plot current i(t).

让我们更详细地讨论时间常数的重要性。为此,我们首先绘制当前 i(t)。

charging current plot

At t = 0, the current through the capacitor circuit is

在 t = 0 时,通过电容器电路的电流为

在这里插入图片描述

At t = RC, the current through the capacitor is

在 t = RC 时,通过电容器的电流为

在这里插入图片描述

Let us consider another RC circuit.

让我们考虑另一个 RC 电路。

RC circuit

Circuit equations using KVL of the above circuits are,

使用上述电路的 KVL 的电路方程是,

在这里插入图片描述

and

在这里插入图片描述

在这里插入图片描述

From (iii) and (v)

从(iii)和(v)

在这里插入图片描述

Differentiating both sides with respect to time t, we get,

根据时间 t 对两侧进行微分,我们得到,

在这里插入图片描述

在这里插入图片描述

Integrating both sides we get,

对两侧进行积分,我们得到,

在这里插入图片描述

At t = 0,

在 t = 0 时,

在这里插入图片描述

The time constant of this circuit would be 2RC/3 sec. Now, the equivalent resistance of the circuit is,

该电路的时间常数为 2RC/3 秒。现在,电路的等效电阻是,

img
r e s i s t a n c e = 2 R / 3 resistance = 2R / 3 resistance=2R/3

The time constant of the circuit has become.

电路的时间常数已经变为

在这里插入图片描述
So, t i m e c o n s t a n t = e q u i v a l e n t   r e s i s t a n c e × c a p a c i t a n c e time constant = equivalent \, resistance × capacitance timeconstant=equivalentresistance×capacitance

Time Constant of an RL Circuit

RL 电路的时间常数

Let us consider an example of a series RL circuit.

让我们考虑一个串联 RL 电路的示例。

RL circuit

Applying Kirchhoff Voltage Law in the above circuit. We get,

在上述电路中应用基尔霍夫电压定律。我们得到,

在这里插入图片描述

The equation can also be solved Laplace Transformation technique. For that, we have to take Laplace Transformation of the equation at both sides,

该方程也可以用拉普拉斯变换技术求解。为此,我们必须对两边的方程进行拉普拉斯变换,

在这里插入图片描述
在这里插入图片描述

Hence, in this equation.

因此,在这个方程中。

在这里插入图片描述

Since the current just after the switch is on, the current through the inductor will be zero.
Now,

由于开关刚接通后的电流,因此通过电感的电流将为零。现在,

在这里插入图片描述

Taking inverse Laplace of the above equation, we get,

取上述方程的逆拉普拉斯,我们得到,

在这里插入图片描述

Now, if we put,

现在,如果我们把,

在这里插入图片描述

We get,

我们得到,

在这里插入图片描述

At the RL circuit, at time = L/R sec, the current becomes 63.3% of its final steady-state value. The L/R is known as the time constant of an LR circuit. Let us plot the current of the inductor circuit.

在 RL 电路中,在时间 = L/R 秒时,电流变为其最终稳态值的 63.3%。L/R 称为 LR 电路的时间常数。让我们绘制电感电路的电流。

current of inductor circuit

The time constant of an LR circuit is the ratio of inductance to the resistance of the circuit. Let us take another.

LR 电路的时间常数是电感与电路电阻的比值。让我们再举一个。

img

This circuit can be redrawn as,

该电路可以重绘为,

img

So, the time constant of the circuit would be

因此,该电路的时间常数为

在这里插入图片描述


Time Constant τ “Tau” Formulas for RC, RL & RLC Circuits

Electrical Technology

Time constant also known as tau represented by the symbol of “τ” is a constant parameter of any capacitive or inductive circuit. It differs from circuit to circuit and also used in different equations. The time constant for some of these circuits are given below:
时间常数也称为 tau,由 “ τ τ τ” 符号表示,是任何电容或电感电路的常数参数。它因电路而异,也用于不同的方程式。其中一些电路的时间常数如下:

Time Constant τ “Tau” Equations for RC, RL and RLC Circuits

τ τ τ for RC Circuit:

τ τ τ 对于 RC 电路:

In this circuit, resistor having resistance “R” is connected in series with the capacitor having capacitance C, whose τ “time constant” is given by:

在该电路中,具有电阻 “R” 的电阻器与具有电容 C 的电容器串联,其 τ τ τ “时间常数” 由下式给出:

τ = R C τ = RC τ=RC
τ = R C = 1 2 π f C \tau = RC = \frac{1}{2\pi f_C} τ=RC=2πfC1

Where

  • τ = R C = τ = RC = τ=RC= is the time constant in seconds
    τ = R C = τ = RC = τ=RC= 是以秒为单位的时间常数
  • R is the resistance in series in ohms (Ω)
    R 是串联电阻,单位为欧姆(Ω)
  • C is the capacitance of the capacitor in farads
    C 是电容器的电容,单位为法拉
  • f C f_C fC = cutoff frequency in hertz
    f C f_C fC = 截止频率,单位为赫兹

τ τ τ for RL Circuit:

对于 RL 电路的 τ τ τ

Inductor of inductance “L” connected in series with resistance “R”, whose time constant “τ” in seconds is given by:
电感 “L” 的电感器与电阻 “R” 串联,其时间常数 “τ” 以秒为单位,由下式给出:

τ = L / R τ = L/R τ=L/R

Where

  • R is the resistance in series
    R 是串联电阻
  • L is the Inductance of the Inductor
    L 是电感的电感
Universal time Constant “τ” Formula

通用时间常数 “ τ τ τ” 公式

C h a n g e = F i n a l – S t a r t ( 1 – 1 / e t / τ ) Change = Final – Start (1 – 1/et/τ) Change=FinalStart(1–1/et/τ)

变化 = 最终–开始( 1 – 1 / e t / τ ) 变化 = 最终 – 开始(1 – 1/et/τ) 变化=最终开始(1–1/et/τ

Where:

  • Final = Value of calculated variable after infinite time (Ultimate value)
    最终 = 无限时间后计算变量的值(最终值)
  • Start = Initial value of calculated variable
    Start = 计算变量的初始值
  • e = e = e= Euler’s number (≈2.7182818)
    e = e = e= 欧拉数(≈2.7182818)
  • t = T i m e i n s e c o n d s t = t = Time in seconds t = t=Timeinsecondst= 时间(以秒为单位)
  • τ = τ = τ= Time constant for circuits in seconds
    τ τ τ = 电路的时间常数,单位为秒

τ τ τ for RLC Circuit:

τ 对于 RLC 电路:

In RLC circuit, we have both RL and RC time constant combined, which makes a problem calculating the time constant. So we calculate what we call the Q-Factor (quality factor).

在 RLC 电路中,我们将 RL 和 RC 时间常数组合在一起,这使得计算时间常数成为问题。因此,我们计算出我们所谓的 Q 因子(品质因数)。

τ τ τ for Series RLC Circuit:

τ τ τ 代表 串联 RLC 电路:

Q factor Series RLC Circuit

τ τ τ for Parallel RLC Circuit:

τ τ τ 对于并联 RLC 电路:

Q factor parallel RLC Circuit

Where

  • R is the resistance in series
    R 是串联电阻
  • L is the Inductance of the Inductor
    L 是电感的电感
  • C is the capacitance of the capacitor
    C 是电容器的电容

Why is the time constant 63.2% and not 50% or 70%?

为什么时间常数是 63.2% 而不是 50% 或 70%?

edited Sep 20, 2018 at 14:42 bariod
asked Sep 18, 2018 at 14:39 Bala Subramanian

I am studying about RC and RL circuits. Why is the time constant equal to 63.2% of the output voltage? Why is it defined as 63% and not any other value?
我正在研究 RC 和 RL 电路。为什么时间常数等于输出电压的 63.2%?为什么它被定义为 63% 而不是任何其他值?

Does a circuit start working at 63% of output voltage? Why not at 50%?
电路是否以 63% 的输出电压开始工作?为什么不在 50% 呢?

Answers 1

Other answers haven’t yet hit upon what makes e special: defining the time constant as the time required for something to drop by a factor of e means that at any moment of time, the rate of change will be such that–if that rate were continued–the time required to decay to nothing would be one time constant.

其他答案尚未指出 “e” 的特殊之处:将时间常数定义为某事物衰减至原来的 1/e 所需的时间,意味着在任何时刻,其变化率都具有这样的特性 —— 如果该变化率持续下去,衰减至零所需的时间将为一个时间常数。

For example, if one has a 1uF cap and a 1M resistor, the time constant will be one second. If the capacitor is charged to 10 volts, the voltage will fall at a rate of 10 volts/second. If it’s charged to 5 volts, the voltage will fall at a rate of 5 volts/second. The fact that the rate of change decreases as the voltage does means that the voltage won’t actually decay to nothing in one second, but the rate of decrease at any moment in time will be the current voltage divided by the time constant.

例如,如果有一个 1 微法的电容和一个 1 兆欧的电阻,时间常数将为 1 秒。如果电容充电至 10 伏,电压下降速率将为 10 伏 / 秒。如果充电至 5 伏,电压下降速率则为 5 伏 / 秒。电压下降时变化率也随之减小,这意味着电压实际上不会在 1 秒内衰减至零,但在任何时刻,电压的下降速率都等于当前电压除以时间常数。

Answers 2

If the time constant were defined as any other unit (e.g. half-life), then the rate of decay would no longer correspond so nicely with the time constant.

如果将时间常数定义为其他单位(例如半衰期),那么衰减速率就不再能与时间常数如此完美地对应。

在这里插入图片描述

Answers 3

It’s built into the mathematics of exponential decay associated with first-order systems. If the response starts at unity at t = 0 t = 0 t=0, then after one “unit of time”, the response is e − 1 = 0.36788 e^{-1}=0.36788 e1=0.36788. When you’re looking at a risetime, you subtract this from unity, giving 0.63212 0.63212 0.63212 or 63.2 % 63.2\% 63.2%.

这源于与一阶系统相关的指数衰减数学原理。如果响应在 t = 0 t = 0 t=0 时从 1 开始,那么经过一个 “时间单位” 后,响应为 e − 1 = 0.36788 e^{-1}=0.36788 e1=0.36788。在研究上升时间时,用 1 减去这个值,得到 0.63212 0.63212 0.63212,即 63.2 % 63.2\% 63.2%

The “unit of time” is referred to as the “time constant” of the system, and is usually denoted τ \tau τ (tau). The full expression for the system response over time ( t t t) is V ( t ) = V 0 e − t τ V (t)=V_0e^{-\frac {t}{\tau}} V(t)=V0eτt

这个 “时间单位” 被称为系统的 “时间常数”,通常用 τ \tau τ(希腊字母 tau)表示。系统响应随时间( t t t)变化的完整表达式为 V ( t ) = V 0 e − t τ V (t)=V_0e^{-\frac {t}{\tau}} V(t)=V0eτt

So the time constant is a useful quantity to know. If want to measure the time constant directly, you measure the time it takes to get to 63.2 % 63.2\% 63.2% of its final value.

因此,时间常数是一个很有用的参数。如果要直接测量时间常数,可以测量达到最终值 63.2 % 63.2\% 63.2% 所需的时间。

In electronics, it works out that the time constant (in seconds) is equal to R × C R×C R×C in an R - C circuit or L / R L/R L/R in an R - L circuit, when you use ohms, farads and henries as units for the component values. This means that if you know the time constant, you can derive one of the component values if you know the other.

在电子学中,当以欧姆、法拉和亨利作为元件值的单位时,时间常数(以秒为单位)在 RC 电路中等于 R × C R×C R×C,在 RL 电路中等于 L / R L/R L/R。这意味着如果知道时间常数,并且知道其中一个元件的值,就可以求出另一个元件的值。


Why is R C RC RC exactly 63.2% full charge, and how is 5 R C 5RC 5RC considered 100%?

为什么 R C RC RC对应的是恰好 63.2% 的满电荷量,以及为什么把 5 R C 5RC 5RC 视为 100% 的满电荷量呢?

edited Nov 29, 2016 at 12:10 Jonas Schäfer’s
asked Nov 29, 2016 at 11:14 Ryan Abbas’s

Answer 1

The voltage of a charging and discharging capacitor is given by the formulas:
电容器充电和放电时的电压分别由以下公式给出:

For charging: U C = U ( 1 − e − t R C ) U_C = U(1 - e^{-\frac{t}{RC}}) UC=U(1eRCt)

For discharging: U C = U e − t R C U_C = Ue^{-\frac{t}{RC}} UC=UeRCt

However, I don’t understand why R C RC RC corresponds to 63.2% of the full charge. I also don’t understand how 5 R C 5RC 5RC is derived and why it is regarded as a full charge.

但是我不明白为什么 R C RC RC 对应的是满电荷量的 63.2%。我也不理解 5 R C 5RC 5RC 是如何得出的,以及为什么把它当作满电荷量。

Answer 2

Take a look at how a capacitor charges through a resistor:

看看电容器通过电阻充电的过程:

在这里插入图片描述

Capacitor charging follows the exponential relationship: V c = V s ( 1 − e − t R C ) V_c = V_s(1 - e^{-\frac{t}{RC}}) Vc=Vs(1eRCt), where V s V_s Vs is the target “supply” voltage.
电容器充电遵循指数关系: V c = V s ( 1 − e − t R C ) V_c = V_s(1 - e^{-\frac{t}{RC}}) Vc=Vs(1eRCt),其中 V s V_s Vs 是目标“电源”电压。

If you let t = R C t = RC t=RC, you’ll find that V c V s = 0.632 \frac{V_c}{V_s}=0.632 VsVc=0.632, or 63% for short:
如果令 t = R C t = RC t=RC,可以发现 V c V s = 0.632 \frac{V_c}{V_s} = 0.632 VsVc=0.632,简而言之就是 63%:

V C V S = ( 1 − e − 1 ) = 0.632120558 \frac{V_C}{V_S}=(1 - e^{-1}) = 0.632120558 VSVC=(1e1)=0.632120558

When you calculate the result of stacking 5 "63%"s together, you get: V c = 0.99326 V s V_c = 0.99326V_s Vc=0.99326Vs. In other words, at 5 R C 5RC 5RC, the voltage reaches 99.326% of the full - charging voltage, which means it’s only 1% away from the full - charging voltage. So, 5 R C 5RC 5RC can be considered a state of full charge.

当计算 5 个 “63%” 叠加的结果时,会得到: V c = 0.99326 V s V_c = 0.99326V_s Vc=0.99326Vs,换句话说, 5 R C 5RC 5RC 时的电压达到了满充电电压的 99.326%,也就是距离满充电电压只差 1% ,所以可以把 5 R C 5RC 5RC 视为充满电的状态。


The Time Constant

时间常数

  1. Definition:When a capacitor discharges through a resistor, the time constant measures how long it takes for the capacitor to discharge. It is defined as the time taken for the charge, current, or voltage of a discharging capacitor to decrease to 37% of its original value. For a charging capacitor, it is the time taken for the charge or voltage to rise to 63% of its maximum value. 37% is 0.37 or 1 e \frac{1}{e} e1 (where e e e is the exponential function, approximately equal to 2.718) multiplied by the original value ( I 0 I_0 I0, Q 0 Q_0 Q0, or V 0 V_0 V0). The time constant is represented by the Greek letter τ \tau τ and measured in seconds (s).
    定义:电容器通过电阻放电时,时间常数用于衡量电容器放电所需的时长。其定义为:放电电容器的电荷、电流或电压减小到其原始值的 37% 所需的时间;对于充电电容器而言,则是电荷或电压上升到其最大值的 63% 所需的时间。37% 即 0.37,也可表示为 1 e \frac{1}{e} e1 e e e 为指数函数,约等于 2.718)乘以原始值( I 0 I_0 I0 Q 0 Q_0 Q0 V 0 V_0 V0 )。时间常数用希腊字母 τ \tau τ 表示,单位为秒( s s s)。
  2. Calculation Formula:The time constant is defined by the equation τ = R C \tau = RC τ=RC, where R R R is the resistance of the resistor (in Ω \Omega Ω) and C C C is the capacitance of the capacitor (in F F F).
    计算公式:时间常数由公式 τ = R C \tau = RC τ=RC 定义 ,其中 R R R 是电阻的阻值(单位: Ω \Omega Ω), C C C 是电容器的电容(单位: F F F)。
  3. Half - life:The half - life t 1 / 2 t_{1/2} t1/2 of a discharging capacitor is the time taken for the charge, current, or voltage to reach half of its initial value. It can be related to the time constant as t 1 / 2 = ln ⁡ ( 2 ) τ ≈ 0.69 τ = 0.69 R C t_{1/2}=\ln(2)\tau\approx0.69\tau = 0.69RC t1/2=ln(2)τ0.69τ=0.69RC.
    半衰期:放电电容器的半衰期 t 1 / 2 t_{1/2} t1/2 ,是指电荷、电流或电压达到其初始值一半所需的时间,它与时间常数的关系为 t 1 / 2 = ln ⁡ ( 2 ) τ ≈ 0.69 τ = 0.69 R C t_{1/2} = \ln(2)\tau \approx 0.69\tau = 0.69RC t1/2=ln(2)τ0.69τ=0.69RC

Charging and Discharging Equations

充电和放电方程

  1. Discharging Equations:The exponential decay equation for current is I = I 0 e − t R C = I 0 e − t τ I = I_0e^{-\frac{t}{RC}} = I_0e^{-\frac{t}{\tau}} I=I0eRCt=I0eτt, where I I I is the current during discharge (in A A A), I 0 I_0 I0 is the initial current before discharge (in A A A), t t t is the time (in s s s), and R C RC RC is the time constant τ \tau τ (in s s s). This equation shows that the smaller the time constant τ \tau τ, the faster the exponential decay of the current during discharge. Also, the larger the initial current I 0 I_0 I0, the longer it takes for the capacitor to discharge. Since the current I I I is always decreasing during discharge, I 0 I_0 I0 is always greater than I I I.
    放电方程:电流的指数衰减方程为 I = I 0 e − t R C = I 0 e − t τ I = I_0e^{-\frac{t}{RC}} = I_0e^{-\frac{t}{\tau}} I=I0eRCt=I0eτt ,式中 I I I 为放电过程中的电流( A A A), I 0 I_0 I0 为放电前的初始电流( A A A), t t t 为时间( s s s), R C RC RC 即时间常数 τ \tau τ s s s)。该方程表明,时间常数 τ \tau τ 越小,放电时电流的指数衰减越快;初始电流 I 0 I_0 I0 越大,电容器放电所需时间越长。由于放电过程中电流 I I I 始终在减小,所以 I 0 I_0 I0 总是大于 I I I
    • Since the current is proportional to the voltage across the capacitor and the charge on the plates, the equation for charge as a function of time is Q = Q 0 e − t R C = Q 0 e − t τ Q = Q_0e^{-\frac{t}{RC}} = Q_0e^{-\frac{t}{\tau}} Q=Q0eRCt=Q0eτt, where Q Q Q is the charge on the capacitor plates (in C C C) and Q 0 Q_0 Q0 is the initial charge on the capacitor plates (in C C C).
    • 由于电流与电容器两端的电压以及极板上的电荷成正比,因此电荷随时间变化的方程为 Q = Q 0 e − t R C = Q 0 e − t τ Q = Q_0e^{-\frac{t}{RC}} = Q_0e^{-\frac{t}{\tau}} Q=Q0eRCt=Q0eτt ,其中 Q Q Q 是电容器极板上的电荷( C C C), Q 0 Q_0 Q0 是初始时刻电容器极板上的电荷( C C C)。
    • The equation for voltage as a function of time is V = V 0 e − t R C = V 0 e − t τ V = V_0e^{-\frac{t}{RC}} = V_0e^{-\frac{t}{\tau}} V=V0eRCt=V0eτt, where V V V is the voltage across the capacitor (in V V V) and V 0 V_0 V0 is the initial voltage across the capacitor (in V V V).
    • 电压随时间变化的方程为 V = V 0 e − t R C = V 0 e − t τ V = V_0e^{-\frac{t}{RC}} = V_0e^{-\frac{t}{\tau}} V=V0eRCt=V0eτt ,其中 V V V 是电容器两端的电压( V V V), V 0 V_0 V0 是初始时刻电容器两端的电压( V V V)。
  2. Charging Equations:When charging, the increase of charge Q Q Q and voltage V V V of the capacitor also shows exponential characteristics. They increase over time but at a decreasing rate. The charging equation for charge is Q = Q 0 ( 1 − e − t R C ) = Q 0 ( 1 − e − t τ ) Q = Q_0(1 - e^{-\frac{t}{RC}}) = Q_0(1 - e^{-\frac{t}{\tau}}) Q=Q0(1eRCt)=Q0(1eτt), where Q 0 Q_0 Q0 is the maximum charge stored when the capacitor is fully charged (in C C C).
    充电方程:充电时,电容器的电荷 Q Q Q 和电压 V V V 增加的过程也呈现指数特性,随时间增加但增速逐渐减慢。电荷的充电方程为 Q = Q 0 ( 1 − e − t R C ) = Q 0 ( 1 − e − t τ ) Q = Q_0(1 - e^{-\frac{t}{RC}}) = Q_0(1 - e^{-\frac{t}{\tau}}) Q=Q0(1eRCt)=Q0(1eτt) ,这里 Q 0 Q_0 Q0 是电容器充满电时存储的最大电荷( C C C)。
    • The charging equation for voltage is V = V 0 ( 1 − e − t R C ) = V 0 ( 1 − e − t τ ) V = V_0(1 - e^{-\frac{t}{RC}}) = V_0(1 - e^{-\frac{t}{\tau}}) V=V0(1eRCt)=V0(1eτt), where V 0 V_0 V0 is the maximum voltage across the capacitor when fully charged (in V V V).
    • 电压的充电方程为 V = V 0 ( 1 − e − t R C ) = V 0 ( 1 − e − t τ ) V = V_0(1 - e^{-\frac{t}{RC}}) = V_0(1 - e^{-\frac{t}{\tau}}) V=V0(1eRCt)=V0(1eτt) V 0 V_0 V0 是电容器充满电时的最大电压( V V V)。
    • The charging equation for current is the same as the discharging equation, I = I 0 e − t R C = I 0 e − t τ I = I_0e^{-\frac{t}{RC}} = I_0e^{-\frac{t}{\tau}} I=I0eRCt=I0eτt, but here Q 0 Q_0 Q0 and V 0 V_0 V0 are the final (or maximum) values, not the initial values.
    • 电流的充电方程与放电方程形式相同,为 I = I 0 e − t R C = I 0 e − t τ I = I_0e^{-\frac{t}{RC}} = I_0e^{-\frac{t}{\tau}} I=I0eRCt=I0eτt ,但此时 Q 0 Q_0 Q0 V 0 V_0 V0 是最终(或最大)值,而非初始值。

Tips

  1. whether the capacitor is charging or discharging in the exam question, as the definition of the time constant varies depending on the state.

    电容器是处于充电还是放电状态,因为时间常数的定义会因状态不同而有所差异。

  2. the exponential constant e e e (approximately equal to 2.718) and its inverse function, the natural logarithm function ln ⁡ ( y ) \ln(y) ln(y). If e x = y e^x = y ex=y, then x = ln ⁡ ( y ) x=\ln(y) x=ln(y). The 0.37 in the definition of the time constant is derived from the exponential constant, and its accurate expression is: The time constant is the time taken for the charge of a capacitor to decrease to 1 e \frac{1}{e} e1 (approximately 0.3678) of its original value.

    指数常数 e e e(约等于2.718)及其反函数自然对数函数 ln ⁡ ( y ) \ln(y) ln(y) 的使用。若 e x = y e^x = y ex=y,则 x = ln ⁡ ( y ) x = \ln(y) x=ln(y) 。时间常数定义中的 0.37 0.37 0.37 正是由指数常数得出,其准确表述为:时间常数是电容器电荷减小到其原始值的 1 e \frac{1}{e} e1(约为0.3678)所需的时间。

  3. the half - life equation t 1 / 2 = 0.69 R C t_{1/2}=0.69RC t1/2=0.69RC

    半衰期方程 t 1 / 2 = 0.69 R C t_{1/2} = 0.69RC t1/2=0.69RC

Worked Example

1 计算电阻值

A capacitor of 7 nF is discharged through a resistor of resistance R R R. The time constant of the discharge is 5.6 × 1 0 − 3 5.6×10^{−3} 5.6×103 s. Calculate the value of R R R.
一个电容为 7 nF 的电容器通过电阻 R R R 放电,放电的时间常数为 5.6 × 1 0 − 3 5.6×10^{−3} 5.6×103 s。计算电阻 R R R 的值。

已知时间常数公式 τ = R C \tau = RC τ=RC,则 R = τ C R=\frac{\tau}{C} R=Cτ。将 τ = 5.6 × 1 0 − 3 \tau = 5.6×10^{−3} τ=5.6×103 s, C = 7 × 1 0 − 9 C = 7×10^{−9} C=7×109 F 代入公式可得:
R = 5.6 × 1 0 − 3 7 × 1 0 − 9 = 8 × 1 0 5   Ω R=\frac{5.6×10^{−3}}{7×10^{−9}} = 8×10^{5}\ \Omega R=7×1095.6×103=8×105 Ω

2 计算电流下降所需时间

The initial current through a circuit with a capacitor of 620 µF is 0.6 A. The capacitor is connected across the terminals of a 450 Ω resistor. Calculate the time taken for the current to fall to 0.4 A.
一个电容为 620 µF 的电容器所在电路的初始电流为 0.6 A,该电容器连接在一个 450 Ω 的电阻两端。计算电流下降到 0.4 A 所需的时间。

根据电流的放电方程 I = I 0 e − t R C I = I_0e^{-\frac{t}{RC}} I=I0eRCt,可得 t = − R C ln ⁡ ( I I 0 ) t=-RC\ln(\frac{I}{I_0}) t=RCln(I0I)
已知 I 0 = 0.6 I_0 = 0.6 I0=0.6 A, I = 0.4 I = 0.4 I=0.4 A, R = 450 R = 450 R=450 Ω, C = 620 × 1 0 − 6 C = 620×10^{−6} C=620×106 F ,将这些值代入公式:
t = − 450 × 620 × 1 0 − 6 ln ⁡ ( 0.4 0.6 ) ≈ 0.15   s t=-450×620×10^{−6}\ln(\frac{0.4}{0.6}) \approx 0.15\ s t=450×620×106ln(0.60.4)0.15 s


via:

  • Time Constant: What it is & How to Find it in an RLC Circuit | Electrical4U
    https://www.electrical4u.com/time-constant/

  • Time Constant τ “Tau” Formulas for RC, RL & RLC Circuits
    https://www.electricaltechnology.org/2020/11/time-constant-τ-tau-formulas-equations-rc-rl-rlc-circuits.html

  • circuit analysis - Why is the time constant 63.2% and not 50% or 70%? - Electrical Engineering Stack Exchange
    https://electronics.stackexchange.com/questions/396653/why-is-the-time-constant-63-2-and-not-50-or-70

  • discharge - why is RC= exactly 63.2% full charge, and how is 5RC considered 100%? - Electrical Engineering Stack Exchange
    https://electronics.stackexchange.com/questions/272138/why-is-rc-exactly-63-2-full-charge-and-how-is-5rc-considered-100

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2286987.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

芯片AI深度实战:实战篇之vim chat

利用vim-ollama这个vim插件,可以在vim内和本地大模型聊天。 系列文章: 芯片AI深度实战:基础篇之Ollama-CSDN博客 芯片AI深度实战:基础篇之langchain-CSDN博客 芯片AI深度实战:实战篇之vim chat-CSDN博客 芯片AI深度…

Spring Boot 日志:项目的“行车记录仪”

一、什么是Spring Boot日志 (一)日志引入 在正式介绍日志之前,我们先来看看上篇文章中(Spring Boot 配置文件)中的验证码功能的一个代码片段: 这是一段校验用户输入的验证码是否正确的后端代码&#xff0c…

【QT】 控件 -- 显示类

🔥 目录 [TOC]( 🔥 目录) 1. 前言 2. 显示类控件2.1 Label 1、显示不同文本2、显示图片3、文本对齐、自动换行、缩进、边距4、设置伙伴 3.2 LCD Number 3.3 ProgressBar 3.4 Calendar Widget 3. 共勉 🔥 1. 前言 之前我在上一篇文章【QT】…

冲刺蓝桥杯之速通vector!!!!!

文章目录 知识点创建增删查改 习题1习题2习题3习题4:习题5: 知识点 C的STL提供已经封装好的容器vector,也可叫做可变长的数组,vector底层就是自动扩容的顺序表,其中的增删查改已经封装好 创建 const int N30; vecto…

小米CR6606,CR6608,CR6609 启用SSH和刷入OpenWRT 23.05.5

闲鱼上收了一台CR6606和一台CR6609, 一直没时间研究, 趁春节假期把这两个都刷成 OpenWRT 配置说明 CPU: MT7621AT,双核880MHz内存: NT5CC128M16JR-EKI 或 M15T2G16128A, 256MB闪存: F59L1G81MB, 128MB无线基带芯片(BB): T7905DAN无线射频芯片(RF): MT7975DN无外置F…

SpringCloud系列教程:微服务的未来(十八)雪崩问题、服务保护方案、Sentinel快速入门

前言 在分布式系统中,雪崩效应(Avalanche Effect)是一种常见的故障现象,通常发生在系统中某个组件出现故障时,导致其他组件级联失败,最终引发整个系统的崩溃。为了有效应对雪崩效应,服务保护方…

大数据相关职位介绍之一(数据分析,数据开发,数据产品经理,数据运营)

大数据相关职位介绍之一 随着大数据、人工智能(AI)和机器学习的快速发展,数据分析与管理已经成为各行各业的重要组成部分。从互联网公司到传统行业的数字转型,数据相关职位在中国日益成为推动企业创新和提升竞争力的关键力量。以…

无人机红外热成像:应急消防的“透视眼”

无人机红外热成像:应急消防的“透视眼” 亲爱的小伙伴们,每年一到夏天,应急消防的战士们就像上紧了发条的闹钟,时刻准备应对各种灾害。炎热天气让火灾隐患“蹭蹭”往上涨,南北各地还有防洪救灾、台风、泥石流等灾害轮…

【狂热算法篇】探秘图论之Dijkstra 算法:穿越图的迷宫的最短路径力量(通俗易懂版)

羑悻的小杀马特.-CSDN博客羑悻的小杀马特.擅长C/C题海汇总,AI学习,c的不归之路,等方面的知识,羑悻的小杀马特.关注算法,c,c语言,青少年编程领域.https://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_8264829…

AI在自动化测试中的伦理挑战

在软件测试领域,人工智能(AI)已经不再是遥不可及的未来技术,而是正在深刻影响着测试过程的现实力量。尤其是在自动化测试领域,AI通过加速测试脚本生成、自动化缺陷检测、测试数据生成等功能,极大提升了测试…

手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)

手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码) 目录 手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)Stable Diffusion 原理图Stable Diffusion的原理解释Stable Diffusion 和Di…

新版231普通阿里滑块 自动化和逆向实现 分析

声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 逆向过程 补环境逆向 部分补环境 …

HTML一般标签和自闭合标签介绍

在HTML中,标签用于定义网页内容的结构和样式。标签通常分为两类:一般标签(也称为成对标签或开放闭合标签)和自闭合标签(也称为空标签或自结束标签)。 以下是这两类标签的详细说明: 一、一般标…

Eureka 服务注册和服务发现的使用

1. 父子工程的搭建 首先创建一个 Maven 项目&#xff0c;删除 src &#xff0c;只保留 pom.xml 然后来进行 pom.xml 的相关配置 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xs…

白嫖DeepSeek:一分钟完成本地部署AI

1. 必备软件 LM-Studio 大模型客户端DeepSeek-R1 模型文件 LM-Studio 是一个支持众多流行模型的AI客户端&#xff0c;DeepSeek是最新流行的堪比GPT-o1的开源AI大模型。 2. 下载软件和模型文件 2.1 下载LM-Studio 官方网址&#xff1a;https://lmstudio.ai 打开官网&#x…

《Origin画百图》之同心环图

《Origin画百图》第四集——同心环图 入门操作可查看合集中的《30秒&#xff0c;带你入门Origin》 具体操作&#xff1a; 1.数据准备&#xff1a;需要X和Y两列数据 2. 选择菜单 绘图 > 条形图&#xff0c;饼图&#xff0c;面积图: 同心圆弧图 3. 这是绘制的基础图形&…

蓝牙技术在物联网中的应用有哪些

蓝牙技术凭借低功耗、低成本和易于部署的特性&#xff0c;在物联网领域广泛应用&#xff0c;推动了智能家居、工业、医疗、农业等多领域发展。 智能家居&#xff1a;在智能家居系统里&#xff0c;蓝牙技术连接各类设备&#xff0c;像智能门锁、智能灯泡、智能插座、智能窗帘等。…

简易计算器(c++ 实现)

前言 本文将用 c 实现一个终端计算器&#xff1a; 能进行加减乘除、取余乘方运算读取命令行输入&#xff0c;输出计算结果当输入表达式存在语法错误时&#xff0c;报告错误&#xff0c;但程序应能继续运行当输出 ‘q’ 时&#xff0c;退出计算器 【简单演示】 【源码位置】…

自动化运维的未来:从脚本到AIOps的演进

点击进入IT管理资料库 一、自动化运维的起源&#xff1a;脚本时代 &#xff08;一&#xff09;脚本在运维中的应用场景 在自动化运维的发展历程中&#xff0c;脚本扮演着至关重要的角色&#xff0c;它作为最初的操作入口&#xff0c;广泛应用于诸多日常运维工作场景里。 在系统…

线程池以及在QT中的接口使用

文章目录 前言线程池架构组成**一、任务队列&#xff08;Task Queue&#xff09;****二、工作线程组&#xff08;Worker Threads&#xff09;****三、管理者线程&#xff08;Manager Thread&#xff09;** 系统协作流程图解 一、QRunnable二、QThreadPool三、线程池的应用场景W…