Python NumPy(7):连接数组、分割数组、数组元素的添加与删除

news2025/1/30 9:55:40

1 连接数组

函数描述
concatenate连接沿现有轴的数组序列
stack沿着新的轴加入一系列数组。
hstack水平堆叠序列中的数组(列方向)
vstack竖直堆叠序列中的数组(行方向)

1.1 numpy.concatenate

        numpy.concatenate 函数用于沿指定轴连接相同形状的两个或多个数组,格式如下:

numpy.concatenate((a1, a2, ...), axis)
  • a1, a2, ...:相同类型的数组
  • axis:沿着它连接数组的轴,默认为 0
import numpy as np

a = np.array([[1, 2], [3, 4]])

print('第一个数组:')
print(a)
print('\n')
b = np.array([[5, 6], [7, 8]])

print('第二个数组:')
print(b)
print('\n')
# 两个数组的维度相同

print('沿轴 0 连接两个数组:')
print(np.concatenate((a, b)))
print('\n')

print('沿轴 1 连接两个数组:')
print(np.concatenate((a, b), axis=1))

1.2 numpy.stack

        numpy.stack 函数用于沿新轴连接数组序列,格式如下:

numpy.stack(arrays, axis)
  • arrays相同形状的数组序列
  • axis:返回数组中的轴,输入数组沿着它来堆叠
import numpy as np

a = np.array([[1, 2], [3, 4]])

print('第一个数组:')
print(a)
print('\n')
b = np.array([[5, 6], [7, 8]])

print('第二个数组:')
print(b)
print('\n')

print('沿轴 0 堆叠两个数组:')
print(np.stack((a, b), 0))
print('\n')

print('沿轴 1 堆叠两个数组:')
print(np.stack((a, b), 1))

1.3 numpy.hstack

        numpy.hstack 是 numpy.stack 函数的变体,它通过水平堆叠来生成数组。

import numpy as np

a = np.array([[1, 2], [3, 4]])

print('第一个数组:')
print(a)
print('\n')
b = np.array([[5, 6], [7, 8]])

print('第二个数组:')
print(b)
print('\n')

print('水平堆叠:')
c = np.hstack((a, b))
print(c)
print('\n')

1.4 numpy.vstack

        numpy.vstack 是 numpy.stack 函数的变体,它通过垂直堆叠来生成数组。

import numpy as np

a = np.array([[1, 2], [3, 4]])

print('第一个数组:')
print(a)
print('\n')
b = np.array([[5, 6], [7, 8]])

print('第二个数组:')
print(b)
print('\n')

print('竖直堆叠:')
c = np.vstack((a, b))
print(c)

2 分割数组

函数数组及操作
split将一个数组分割为多个子数组
hsplit将一个数组水平分割为多个子数组(按列)
vsplit将一个数组垂直分割为多个子数组(按行)

2.1 numpy.split

        numpy.split 函数沿特定的轴将数组分割为子数组,格式如下:

numpy.split(ary, indices_or_sections, axis)
  • ary:被分割的数组
  • indices_or_sections:如果是一个整数,就用该数平均切分,如果是一个数组,为沿轴切分的位置(左开右闭)
  • axis:设置沿着哪个方向进行切分,默认为 0,横向切分,即水平方向。为 1 时,纵向切分,即竖直方向。
import numpy as np

a = np.arange(9)

print('第一个数组:')
print(a)
print('\n')

print('将数组分为三个大小相等的子数组:')
b = np.split(a, 3)
print(b)
print('\n')

print('将数组在一维数组中表明的位置分割:')
b = np.split(a, [4, 7])
print(b)

        axis 为 0 时在水平方向分割,axis 为 1 时在垂直方向分割:

import numpy as np

a = np.arange(16).reshape(4, 4)
print('第一个数组:')
print(a)
print('\n')
print('默认分割(0轴):')
b = np.split(a, 2)
print(b)
print('\n')

print('沿水平方向分割:')
c = np.split(a, 2, 1)
print(c)
print('\n')

print('沿水平方向分割:')
d = np.hsplit(a, 2)
print(d)

2.2 numpy.hsplit

        numpy.hsplit 函数用于水平分割数组,通过指定要返回的相同形状的数组数量来拆分原数组。

import numpy as np

harr = np.floor(10 * np.random.random((2, 6)))
print('原array:')
print(harr)

print('拆分后:')
print(np.hsplit(harr, 3))

2.3 numpy.vsplit

        numpy.vsplit 沿着垂直轴分割,其分割方式与hsplit用法相同。

import numpy as np

a = np.arange(16).reshape(4, 4)

print('第一个数组:')
print(a)
print('\n')

print('竖直分割:')
b = np.vsplit(a, 2)
print(b)

3 数组元素的添加与删除

函数元素及描述
resize返回指定形状的新数组
append将值添加到数组末尾
insert沿指定轴将值插入到指定下标之前
delete删掉某个轴的子数组,并返回删除后的新数组
unique查找数组内的唯一元素

3.1 numpy.resize

        numpy.resize 函数返回指定大小的新数组。如果新数组大小大于原始大小,则包含原始数组中的元素的副本。

numpy.resize(arr, shape)
  • arr:要修改大小的数组
  • shape:返回数组的新形状
import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6]])

print('第一个数组:')
print(a)
print('\n')

print('第一个数组的形状:')
print(a.shape)
print('\n')
b = np.resize(a, (3, 2))

print('第二个数组:')
print(b)
print('\n')

print('第二个数组的形状:')
print(b.shape)
print('\n')
# 要注意 a 的第一行在 b 中重复出现,因为尺寸变大了

print('修改第二个数组的大小:')
b = np.resize(a, (3, 3))
print(b)

3.2 numpy.append

        numpy.append 函数在数组的末尾添加值。 追加操作会分配整个数组,并把原来的数组复制到新数组中。 此外,输入数组的维度必须匹配否则将生成ValueError。append 函数返回的始终是一个一维数组。

  • arr:输入数组
  • values:要向arr添加的值,需要和arr形状相同(除了要添加的轴)
  • axis:默认为 None。当axis无定义时,是横向加成,返回总是为一维数组!当axis有定义的时候,分别为0和1的时候。当axis有定义的时候,分别为0和1的时候(列数要相同)。当axis为1时,数组是加在右边(行数要相同)。
import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6]])

print('第一个数组:')
print(a)
print('\n')

print('向数组添加元素:')
print(np.append(a, [7, 8, 9]))
print('\n')

print('沿轴 0 添加元素:')
print(np.append(a, [[7, 8, 9]], axis=0))
print('\n')

print('沿轴 1 添加元素:')
print(np.append(a, [[5, 5, 5], [7, 8, 9]], axis=1))

3.3 numpy.insert

        numpy.insert 函数在给定索引之前,沿给定轴在输入数组中插入值。函数会在指定位置(或位置数组)插入给定的值或数组,然后返回新的数组。被插入的元素可以是标量值,也可以是数组。需要注意的是,插入操作会返回一个新的数组,而不会改变原始数组。

numpy.insert(arr, obj, values, axis)
  • arr:输入数组
  • obj:在其之前插入值的索引
  • values:要插入的值
  • axis:沿着它插入的轴,如果未提供,则输入数组会被展开
import numpy as np

a = np.array([[1, 2], [3, 4], [5, 6]])

print('第一个数组:')
print(a)
print('\n')

print('未传递 Axis 参数。 在删除之前输入数组会被展开。')
print(np.insert(a, 3, [11, 12]))
print('\n')
print('传递了 Axis 参数。 会广播值数组来配输入数组。')

print('沿轴 0 广播:')
print(np.insert(a, 1, [11], axis=0))
print('\n')

print('沿轴 1 广播:')
print(np.insert(a, 1, 11, axis=1))

3.4 numpy.delete

        numpy.delete 函数返回从输入数组中删除指定子数组的新数组。 与 insert() 函数的情况一样,如果未提供轴参数,则输入数组将展开。

Numpy.delete(arr, obj, axis)
  • arr:输入数组
  • obj:可以被切片,整数或者整数数组,表明要从输入数组删除的子数组
  • axis:沿着它删除给定子数组的轴,如果未提供,则输入数组会被展开
import numpy as np

a = np.arange(12).reshape(3, 4)

print('第一个数组:')
print(a)
print('\n')

print('未传递 Axis 参数。 在插入之前输入数组会被展开。')
print(np.delete(a, 5))
print('\n')

print('删除第二列:')
print(np.delete(a, 1, axis=1))
print('\n')

print('包含从数组中删除的替代值的切片:')
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
print(np.delete(a, np.s_[::2]))

3.5 numpy.unique

        numpy.unique 函数用于去除数组中的重复元素。

numpy.unique(arr, return_index, return_inverse, return_counts)
  • arr:输入数组,如果不是一维数组则会展开
  • return_index:如果为true,返回新列表元素在旧列表中的位置(下标),并以列表形式储
  • return_inverse:如果为true,返回旧列表元素在新列表中的位置(下标),并以列表形式储
  • return_counts:如果为true,返回去重数组中的元素在原数组中的出现次数
import numpy as np

a = np.array([5, 2, 6, 2, 7, 5, 6, 8, 2, 9])

print('第一个数组:')
print(a)
print('\n')

print('第一个数组的去重值:')
u = np.unique(a)
print(u)
print('\n')

print('去重数组的索引数组:')
u, indices = np.unique(a, return_index=True)
print(indices)
print('\n')

print('我们可以看到每个和原数组下标对应的数值:')
print(a)
print('\n')

print('去重数组的下标:')
u, indices = np.unique(a, return_inverse=True)
print(u)
print('\n')

print('下标为:')
print(indices)
print('\n')

print('使用下标重构原数组:')
print(u[indices])
print('\n')

print('返回去重元素的重复数量:')
u, indices = np.unique(a, return_counts=True)
print(u)
print(indices)

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2286372.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【LLM】deepseek多模态之Janus-Pro和JanusFlow框架

note 文章目录 note一、Janus-Pro:解耦视觉编码,实现多模态高效统一技术亮点模型细节 二、JanusFlow:融合生成流与语言模型,重新定义多模态技术亮点模型细节 Reference 一、Janus-Pro:解耦视觉编码,实现多模…

2000-2021年 全国各地级市专利申请与获得情况、绿色专利申请与获得情况数据

2000-2021年 全国各地级市专利申请与获得情况、绿色专利申请与获得情况数据.ziphttps://download.csdn.net/download/2401_84585615/89575931 https://download.csdn.net/download/2401_84585615/89575931 2000至2021年,全国各地级市的专利申请与获得情况呈现出显著…

51单片机(STC89C52)开发:点亮一个小灯

软件安装: 安装开发板CH340驱动。 安装KEILC51开发软件:C51V901.exe。 下载软件:PZ-ISP.exe 创建项目: 新建main.c 将main.c加入至项目中: main.c:点亮一个小灯 #include "reg52.h"sbit LED1P2^0; //P2的…

240. 搜索二维矩阵||

参考题解:https://leetcode.cn/problems/search-a-2d-matrix-ii/solutions/2361487/240-sou-suo-er-wei-ju-zhen-iitan-xin-qin-7mtf 将矩阵旋转45度,可以看作一个二叉搜索树。 假设以左下角元素为根结点, 当target比root大的时候&#xff…

反向代理模块b

1 概念 1.1 反向代理概念 反向代理是指以代理服务器来接收客户端的请求,然后将请求转发给内部网络上的服务器,将从服务器上得到的结果返回给客户端,此时代理服务器对外表现为一个反向代理服务器。 对于客户端来说,反向代理就相当于…

【Linux权限】—— 于虚拟殿堂,轻拨密钥启华章

欢迎来到ZyyOvO的博客✨,一个关于探索技术的角落,记录学习的点滴📖,分享实用的技巧🛠️,偶尔还有一些奇思妙想💡 本文由ZyyOvO原创✍️,感谢支持❤️!请尊重原创&#x1…

EasyExcel使用详解

文章目录 EasyExcel使用详解一、引言二、环境准备与基础配置1、添加依赖2、定义实体类 三、Excel 读取详解1、基础读取2、自定义监听器3、多 Sheet 处理 四、Excel 写入详解1、基础写入2、动态列与复杂表头3、样式与模板填充 五、总结 EasyExcel使用详解 一、引言 EasyExcel 是…

前端-Rollup

Rollup 是一个用于 JavaScript 的模块打包工具,它将小的代码片段编译成更大、更复杂的代码,例如库或应用程序。它使用 JavaScript 的 ES6 版本中包含的新标准化代码模块格式,而不是以前的 CommonJS 和 AMD 等特殊解决方案。ES 模块允许你自由…

vue3相关知识点

title: vue_1 date: 2025-01-28 12:00:00 tags:- 前端 categories:- 前端vue3 Webpack ~ vite vue3是基于vite创建的 vite 更快一点 一些准备工作 准备后如图所示 插件 Main.ts // 引入createApp用于创建应用 import {createApp} from vue // 引入App根组件 import App f…

微服务网关鉴权之sa-token

目录 前言 项目描述 使用技术 项目结构 要点 实现 前期准备 依赖准备 统一依赖版本 模块依赖 配置文件准备 登录准备 网关配置token解析拦截器 网关集成sa-token 配置sa-token接口鉴权 配置satoken权限、角色获取 通用模块配置用户拦截器 api模块配置feign…

华为小米vivo向上,苹果荣耀OPPO向下

日前,Counterpoint发布的手机销量月度报告显示,中国智能手机销量在2024年第四季度同比下降3.2%,成为2024年唯一出现同比下滑的季度。而对于各大智能手机品牌来说,他们的市场份额和格局也在悄然发生变化。 华为逆势向上 在2024年第…

国产编辑器EverEdit - 输出窗口

1 输出窗口 1.1 应用场景 输出窗口可以显示用户执行某些操作的结果,主要包括: 查找类:查找全部,筛选等待操作,可以把查找结果打印到输出窗口中; 程序类:在执行外部程序时(如:命令窗…

获取snmp oid的小方法1(随手记)

snmpwalk遍历设备的mib # snmpwalk -v <SNMP version> -c <community-id> <IP> . snmpwalk -v 2c -c test 192.168.100.201 .根据获取的值&#xff0c;找到某一个想要的值的oid # SNMPv2-MIB::sysName.0 STRING: test1 [rootzabbix01 fonts]# snmpwalk -v…

望获实时Linux系统:2024回顾与2025展望

2024年回顾 功能安全认证 2024年4月&#xff0c;望获操作系统V2获ISO26262:2018功能安全产品认证&#xff08;ASIL B等级&#xff09;&#xff0c;达到国际功能安全标准。 EtherCAT实时性增强 2024年5月&#xff0c;发布通信实时增强组件&#xff0c;EtherCAT总线通信抖…

2025_1_29 C语言学习中关于指针

1. 指针 指针就是存储的变量的地址&#xff0c;指针变量就是指针的变量。 1.1 空指针 当定义一个指针没有明确指向内容时&#xff0c;就可以将他设置为空指针 int* p NULL;这样对空指针的操作就会使程序崩溃而不会导致出现未定义行为&#xff0c;因为程序崩溃是宏观的&…

SQL注入漏洞之高阶手法 宽字节注入以及编码解释 以及堆叠注入原理说明

目录 宽字节注入 编码区分 原理 函数 转译符号解释 注意 绕过方式详解 堆叠【Stack】注入攻击 注入语句 宽字节注入 在说宽字节注入之前 我们需要知道编码相关的知识点&#xff0c;这个有助于搞定什么是宽字节注入 分清楚是ascii码是什么宽字节注入代码里面加入了adds…

ADC 精度 第一部分:精度与分辨率是否不同?

在与使用模数转换器&#xff08;ADC&#xff09;的系统设计师交谈时&#xff0c;我经常听到的一个最常见问题是&#xff1a; “你们的16位ADC也是16位准确的吗&#xff1f;” 这个问题的答案在于对分辨率和精度这两个概念的基本理解存在差异。尽管这是两个完全不同的概念&…

生成模型:扩散模型(DDPM, DDIM, 条件生成)

扩散模型的理论较为复杂&#xff0c;论文公式与开源代码都难以理解。现有的教程大多侧重推导公式。为此&#xff0c;本文通过精简代码&#xff08;约300行&#xff09;&#xff0c;更多以代码运行角度讲解扩散模型。 本代码包括扩散模型的主流技术复现&#xff1a; 1.DDPM (De…

【hot100】刷题记录(7)-除自身数组以外的乘积

题目描述&#xff1a; 给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#x…

鸢尾花书01---基本介绍和Jupyterlab的上手

文章目录 1.致谢和推荐2.py和.ipynb区别3.Jupyterlab的上手3.1入口3.2页面展示3.3相关键介绍3.4代码的运行3.5重命名3.6latex和markdown说明 1.致谢和推荐 这个系列是关于一套书籍&#xff0c;结合了python和数学&#xff0c;机器学习等等相关的理论&#xff0c;总结的7本书籍…