深度学习项目--基于LSTM的糖尿病预测探究(pytorch实现)

news2025/1/27 16:01:22
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

前言

  • LSTM模型一直是一个很经典的模型,一般用于序列数据预测,这个可以很好的挖掘数据上下文信息,本文将使用LSTM进行糖尿病预测(二分类问题),采用LSTM+Linear解决分类问题

  • 📖 糖尿病预测之前我用随机森林做过:机器学习/数据分析案例—糖尿病预测;

  • 👀 后面打算用机器学习(随机森林、SVM等)结合深度学习LSTM做一个比较完整的项目,大家可以关注一下哈;

  • LSTM讲解: 深度学习基础–LSTM学习笔记(李沐《动手学习深度学习》)

  • 欢迎收藏 + 关注,本人将会持续更新

文章目录

    • 1、数据导入和数据预处理
      • 1、数据导入
      • 2、数据统计
      • 3、数据分布分析
      • 4、相关性分析
    • 2、数据标准化和划分
    • 3、创建模型
    • 4、模型训练
      • 1、创建训练集
      • 2、创建测试集函数
      • 3、设置超参数
    • 5、模型训练
    • 6、模型结果展示
    • 7、预测

1、数据导入和数据预处理

1、数据导入

import torch  
import torch.nn as nn 
from torch.utils.data import DataLoader, TensorDataset
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.preprocessing import StandardScaler 
from sklearn.model_selection import train_test_split
#设置字体
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]  # 显示中文
plt.rcParams['axes.unicode_minus'] = False		# 显示负号

# 数据不大,用CPU即可
device = 'cpu'

data_df = pd.read_excel('./dia.xls')

data_df.head()
卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病
0180544210381.252.991.070.645.31838304.99243.35010
1180544220311.151.990.840.503.98856304.72391.04710
2180544230271.292.210.690.604.19736105.87325.75110
3180544240330.932.010.660.843.60836002.40203.24020
4180544250361.172.830.830.734.83856704.09236.84300

2、数据统计

data_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1006 entries, 0 to 1005
Data columns (total 16 columns):
 #   Column      Non-Null Count  Dtype  
---  ------      --------------  -----  
 0   卡号          1006 non-null   int64  
 1   性别          1006 non-null   int64  
 2   年龄          1006 non-null   int64  
 3   高密度脂蛋白胆固醇   1006 non-null   float64
 4   低密度脂蛋白胆固醇   1006 non-null   float64
 5   极低密度脂蛋白胆固醇  1006 non-null   float64
 6   甘油三酯        1006 non-null   float64
 7   总胆固醇        1006 non-null   float64
 8   脉搏          1006 non-null   int64  
 9   舒张压         1006 non-null   int64  
 10  高血压史        1006 non-null   int64  
 11  尿素氮         1006 non-null   float64
 12  尿酸          1006 non-null   float64
 13  肌酐          1006 non-null   int64  
 14  体重检查结果      1006 non-null   int64  
 15  是否糖尿病       1006 non-null   int64  
dtypes: float64(7), int64(9)
memory usage: 125.9 KB
data_df.describe()
卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病
count1.006000e+031006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.000000
mean1.838279e+070.59841050.2882701.1522012.7074750.9983111.8967204.85762480.81908576.8866800.1739565.562684339.34542764.1063621.6093440.444334
std6.745088e+050.49046416.9214870.3134260.8480700.7158912.4214031.02997312.54227012.7631730.3792601.64634284.56984629.3384370.7723270.497139
min1.805442e+070.00000020.0000000.4200000.8400000.1400000.3500002.41000041.00000045.0000000.0000002.210000140.80000030.0000000.0000000.000000
25%1.807007e+070.00000037.2500000.9200002.1000000.6800000.8800004.20000072.00000067.0000000.0000004.450000280.85000051.2500001.0000000.000000
50%1.807036e+071.00000050.0000001.1200002.6800000.8500001.3350004.78500079.00000076.0000000.0000005.340000333.00000062.0000002.0000000.000000
75%1.809726e+071.00000060.0000001.3200003.2200001.0900002.0875005.38000088.00000085.0000000.0000006.367500394.00000072.0000002.0000001.000000
max2.026124e+071.00000093.0000002.5000007.98000011.26000045.84000012.610000135.000000119.0000001.00000018.640000679.000000799.0000003.0000001.000000

3、数据分布分析

# 缺失值统计
data_df.isnull().sum()
卡号            0
性别            0
年龄            0
高密度脂蛋白胆固醇     0
低密度脂蛋白胆固醇     0
极低密度脂蛋白胆固醇    0
甘油三酯          0
总胆固醇          0
脉搏            0
舒张压           0
高血压史          0
尿素氮           0
尿酸            0
肌酐            0
体重检查结果        0
是否糖尿病         0
dtype: int64
# 数据分布、异常值分析
feature_name = {
    '性别': '性别',
    '年龄': '年龄',
    '高密度脂蛋白胆固醇': '高密度脂蛋白胆固醇',
    '低密度脂蛋白胆固醇': '低密度脂蛋白胆固醇',
    '极低密度脂蛋白胆固醇': '极低密度脂蛋白胆固醇',
    '甘油三酯': '甘油三酯',
    '总胆固醇': '总胆固醇',
    '脉搏': '脉搏',
    '舒张压': '舒张压',
    '高血压史': '高血压史',
    '尿素氮': '尿素氮',
    '肌酐': '肌酐',
    '体重检查结果': '体重检查结果',
    '是否糖尿病': '是否糖尿病'
}

# 子箱图 展示
plt.figure(figsize=(20, 20))

for i, (col, col_name) in enumerate(feature_name.items(), 1):
    plt.subplot(4, 4, i)
    # 绘制子箱图
    sns.boxplot(x=data_df["是否糖尿病"],y=data_df[col])
    # 设置标题
    plt.title(f'{col_name}的纸箱图', fontsize=10)
    plt.ylabel('数值', fontsize=12)
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    
plt.show()


在这里插入图片描述

异常值分析(查阅资料后发现):

  1. 总数据较少;
  2. 特征参数受很多因素的影响,故这里假设没有异常值(数据多的时候可以进一步分析)

患糖尿病和不患糖尿病数据分布分析

  • 发现患病和不患病在:年龄、高密度蛋白固醇、低密度蛋白固醇、低密度蛋白固醇、甘油三肪、舒张压、高血压、尿素的相关因素等数据因素有关

4、相关性分析

plt.figure(figsize=(15, 10))
sns.heatmap(data_df.corr(), annot=True, fmt=".2f")
plt.show()


在这里插入图片描述

高密度蛋白胆固醇存在负相关,故删除该特征

2、数据标准化和划分

时间步长为1

# 特征选择
x = data_df.drop(['卡号', '高密度脂蛋白胆固醇', '是否糖尿病'], axis=1)
y = data_df['是否糖尿病']

# 数据标准化(数据之间差别大), 二分类问题,y不需要做标准化
sc = StandardScaler()
x = sc.fit_transform(x)

# 转换为tensors数据
x = torch.tensor(np.array(x), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)

# 数据划分, 训练:测试 = 8: 2
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2 ,random_state=42)

# 维度设置, [batch_size, seq, features], 当然不设置也没事,因为这样默认** 设置 seq 为 1**
x_train = x_train.unsqueeze(1)
x_test = x_test.unsqueeze(1)

# 查看维度
x_train.shape, y_train.shape
(torch.Size([804, 1, 13]), torch.Size([804]))
# 构建数据集
batch_size = 16

train_dl = DataLoader(TensorDataset(x_train, y_train),
                      batch_size=batch_size,
                      shuffle=True
                      )

test_dl = DataLoader(TensorDataset(x_test, y_test),
                     batch_size=batch_size,
                     shuffle=False
                     )
for X, Y in train_dl:
    print(X.shape)
    print(Y.shape)
    break 
torch.Size([16, 1, 13])
torch.Size([16])

3、创建模型

class Model_lstm(nn.Module):
    def __init__(self):
        super().__init__()
        
        '''
        模型结构:
            1、两层lstm
            2、一层linear 
        '''
        
        self.lstm1 = nn.LSTM(input_size=13, hidden_size=200,
                             num_layers=1, batch_first=True)
        self.lstm2 = nn.LSTM(input_size=200, hidden_size=200,
                             num_layers=1, batch_first=True)
        # 展开,分类
        self.lc1 = nn.Linear(200, 2)
        
    def forward(self, x):
        out, hidden1 = self.lstm1(x)
        out, _ = self.lstm2(out, hidden1)  # 将上一个层的最后隐藏层状态,作为lstm2的这一层的隐藏层状态
        out = self.lc1(out)
        return out
    
model = Model_lstm().to(device)

model
Model_lstm(
  (lstm1): LSTM(13, 200, batch_first=True)
  (lstm2): LSTM(200, 200, batch_first=True)
  (lc1): Linear(in_features=200, out_features=2, bias=True)
)
model(torch.randn(8, 1, 13)).shape
torch.Size([8, 1, 2])

4、模型训练

1、创建训练集

def train(dataloader, model, loss_fn, opt):
    size = len(dataloader.dataset)
    num_batch = len(dataloader)
    
    train_acc, train_loss = 0.0, 0.0 
    
    for X, y in dataloader:
        X, y = X.to(device), y.to(device)
        
        pred = model(X).view(-1, 2)
        loss = loss_fn(pred, y)
        
        # 梯度设置
        opt.zero_grad()
        loss.backward()
        opt.step()
        
        train_loss += loss.item()
        # 求最大概率配对
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        
    train_acc /= size 
    train_loss /= num_batch
    
    return train_acc, train_loss 
        

2、创建测试集函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batch = len(dataloader)
    
    test_acc, test_loss = 0.0, 0.0 
    
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            
            pred = model(X).view(-1, 2)
            loss = loss_fn(pred, y)
            
            test_loss += loss.item()
            # 求最大概率配对
            test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
            
    test_acc /= size 
    test_loss /= num_batch 
    
    return test_acc, test_loss

3、设置超参数

learn_rate = 1e-4
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)
loss_fn = nn.CrossEntropyLoss()

5、模型训练

epochs = 50

train_acc, train_loss, test_acc, test_loss = [], [], [], []

for i in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 输出
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
    print(template.format(i + 1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
    
print("---------------Done---------------")
Epoch: 1, Train_acc:58.5%, Train_loss:0.677, Test_acc:75.7%, Test_loss:0.655
Epoch: 2, Train_acc:71.0%, Train_loss:0.643, Test_acc:77.2%, Test_loss:0.606
Epoch: 3, Train_acc:75.2%, Train_loss:0.590, Test_acc:79.7%, Test_loss:0.533
Epoch: 4, Train_acc:76.9%, Train_loss:0.524, Test_acc:80.2%, Test_loss:0.469
Epoch: 5, Train_acc:77.5%, Train_loss:0.481, Test_acc:79.7%, Test_loss:0.436
Epoch: 6, Train_acc:78.4%, Train_loss:0.470, Test_acc:79.7%, Test_loss:0.419
Epoch: 7, Train_acc:78.6%, Train_loss:0.452, Test_acc:80.7%, Test_loss:0.412
Epoch: 8, Train_acc:78.5%, Train_loss:0.449, Test_acc:80.7%, Test_loss:0.406
Epoch: 9, Train_acc:78.7%, Train_loss:0.444, Test_acc:80.7%, Test_loss:0.400
Epoch:10, Train_acc:79.0%, Train_loss:0.435, Test_acc:81.2%, Test_loss:0.395
Epoch:11, Train_acc:78.4%, Train_loss:0.428, Test_acc:81.2%, Test_loss:0.391
Epoch:12, Train_acc:79.1%, Train_loss:0.428, Test_acc:81.2%, Test_loss:0.388
Epoch:13, Train_acc:79.0%, Train_loss:0.421, Test_acc:80.7%, Test_loss:0.385
Epoch:14, Train_acc:79.2%, Train_loss:0.415, Test_acc:81.7%, Test_loss:0.382
Epoch:15, Train_acc:79.1%, Train_loss:0.415, Test_acc:81.7%, Test_loss:0.379
Epoch:16, Train_acc:79.7%, Train_loss:0.422, Test_acc:81.7%, Test_loss:0.377
Epoch:17, Train_acc:79.5%, Train_loss:0.410, Test_acc:81.7%, Test_loss:0.375
Epoch:18, Train_acc:79.2%, Train_loss:0.406, Test_acc:81.7%, Test_loss:0.374
Epoch:19, Train_acc:80.3%, Train_loss:0.407, Test_acc:82.2%, Test_loss:0.372
Epoch:20, Train_acc:80.1%, Train_loss:0.409, Test_acc:81.2%, Test_loss:0.370
Epoch:21, Train_acc:80.2%, Train_loss:0.397, Test_acc:80.7%, Test_loss:0.368
Epoch:22, Train_acc:81.0%, Train_loss:0.399, Test_acc:81.7%, Test_loss:0.367
Epoch:23, Train_acc:80.7%, Train_loss:0.396, Test_acc:81.2%, Test_loss:0.365
Epoch:24, Train_acc:81.0%, Train_loss:0.401, Test_acc:81.7%, Test_loss:0.363
Epoch:25, Train_acc:81.1%, Train_loss:0.392, Test_acc:82.2%, Test_loss:0.363
Epoch:26, Train_acc:81.2%, Train_loss:0.385, Test_acc:82.2%, Test_loss:0.362
Epoch:27, Train_acc:80.6%, Train_loss:0.392, Test_acc:82.2%, Test_loss:0.361
Epoch:28, Train_acc:80.5%, Train_loss:0.382, Test_acc:81.2%, Test_loss:0.358
Epoch:29, Train_acc:81.1%, Train_loss:0.386, Test_acc:81.7%, Test_loss:0.358
Epoch:30, Train_acc:80.7%, Train_loss:0.380, Test_acc:82.2%, Test_loss:0.358
Epoch:31, Train_acc:81.5%, Train_loss:0.378, Test_acc:81.7%, Test_loss:0.357
Epoch:32, Train_acc:80.6%, Train_loss:0.373, Test_acc:81.2%, Test_loss:0.356
Epoch:33, Train_acc:81.3%, Train_loss:0.373, Test_acc:81.7%, Test_loss:0.357
Epoch:34, Train_acc:80.8%, Train_loss:0.378, Test_acc:81.7%, Test_loss:0.354
Epoch:35, Train_acc:81.5%, Train_loss:0.372, Test_acc:81.2%, Test_loss:0.355
Epoch:36, Train_acc:81.5%, Train_loss:0.368, Test_acc:81.2%, Test_loss:0.354
Epoch:37, Train_acc:81.2%, Train_loss:0.368, Test_acc:80.7%, Test_loss:0.354
Epoch:38, Train_acc:81.2%, Train_loss:0.369, Test_acc:81.2%, Test_loss:0.353
Epoch:39, Train_acc:81.7%, Train_loss:0.365, Test_acc:81.2%, Test_loss:0.354
Epoch:40, Train_acc:81.5%, Train_loss:0.363, Test_acc:81.2%, Test_loss:0.355
Epoch:41, Train_acc:81.7%, Train_loss:0.358, Test_acc:81.2%, Test_loss:0.354
Epoch:42, Train_acc:81.7%, Train_loss:0.355, Test_acc:81.2%, Test_loss:0.353
Epoch:43, Train_acc:81.3%, Train_loss:0.353, Test_acc:80.7%, Test_loss:0.354
Epoch:44, Train_acc:82.0%, Train_loss:0.355, Test_acc:80.7%, Test_loss:0.354
Epoch:45, Train_acc:81.7%, Train_loss:0.353, Test_acc:79.7%, Test_loss:0.354
Epoch:46, Train_acc:82.1%, Train_loss:0.354, Test_acc:80.2%, Test_loss:0.354
Epoch:47, Train_acc:82.0%, Train_loss:0.349, Test_acc:80.2%, Test_loss:0.356
Epoch:48, Train_acc:82.1%, Train_loss:0.350, Test_acc:80.2%, Test_loss:0.356
Epoch:49, Train_acc:82.0%, Train_loss:0.345, Test_acc:80.7%, Test_loss:0.355
Epoch:50, Train_acc:81.8%, Train_loss:0.344, Test_acc:80.7%, Test_loss:0.355
---------------Done---------------

6、模型结果展示

from datetime import datetime
current_time = datetime.now()

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training Accuracy')
plt.xlabel(current_time) 

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training Loss')
plt.show()


在这里插入图片描述

7、预测

test_x = x_test[0].reshape(1, 1, 13)

pred = model(test_x.to(device)).reshape(-1, 2)
res = pred.argmax(1).item()

print(f"预测结果: {res}, (1: 患病; 0: 不患病)")
预测结果: 1, (1: 患病; 0: 不患病)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2284014.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode - Google 大模型校招10题 第1天 Attention 汇总 (3题)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/145368666 GroupQueryAttention(分组查询注意力机制) 和 KVCache(键值缓存) 是大语言模型中的常见架构&#xff0c;GroupQueryAttention 是注意力…

Kotlin开发(七):对象表达式、对象声明和委托的奥秘

Kotlin 让代码更优雅&#xff01; 每个程序员都希望写出优雅高效的代码&#xff0c;但现实往往不尽人意。对象表达式、对象声明和 Kotlin 委托正是为了解决代码中的复杂性而诞生的。为什么选择这个主题&#xff1f;因为它不仅是 Kotlin 语言的亮点之一&#xff0c;还能极大地提…

数据库、数据仓库、数据湖有什么不同

数据库、数据仓库和数据湖是三种不同的数据存储和管理技术&#xff0c;它们在用途、设计目标、数据处理方式以及适用场景上存在显著差异。以下将从多个角度详细说明它们之间的区别&#xff1a; 1. 数据结构与存储方式 数据库&#xff1a; 数据库主要用于存储结构化的数据&…

【2024年华为OD机试】 (B卷,100分)- 字符串摘要(JavaScriptJava PythonC/C++)

一、问题描述 题目描述 给定一个字符串的摘要算法&#xff0c;请输出给定字符串的摘要值。具体步骤如下&#xff1a; 去除字符串中非字母的符号&#xff1a;只保留字母字符。处理连续字符&#xff1a;如果出现连续字符&#xff08;不区分大小写&#xff09;&#xff0c;则输…

DIY QMK量子键盘

最近放假了&#xff0c;趁这个空余在做一个分支项目&#xff0c;一款机械键盘&#xff0c;量子键盘取自固件名称QMK&#xff08;Quantum Mechanical Keyboard&#xff09;。 键盘作为计算机或其他电子设备的重要输入设备之一&#xff0c;通过将按键的物理动作转换为数字信号&am…

mamba论文学习

rnn 1986 训练速度慢 testing很快 但是很快就忘了 lstm 1997 训练速度慢 testing很快 但是也会忘&#xff08;序列很长的时候&#xff09; GRU实在lstm的基础上改进&#xff0c;改变了一些门 transformer2017 训练很快&#xff0c;testing慢些&#xff0c;时间复杂度高&am…

智慧消防营区一体化安全管控 2024 年度深度剖析与展望

在 2024 年&#xff0c;智慧消防营区一体化安全管控领域取得了令人瞩目的进展&#xff0c;成为保障营区安全稳定运行的关键力量。这一年&#xff0c;行业在政策驱动、技术创新应用、实践成果及合作交流等方面呈现出多元且深刻的发展态势&#xff0c;同时也面临着一系列亟待解决…

解锁微服务:五大进阶业务场景深度剖析

目录 医疗行业&#xff1a;智能诊疗的加速引擎 电商领域&#xff1a;数据依赖的破局之道 金融行业&#xff1a;运维可观测性的提升之路 物流行业&#xff1a;智慧物流的创新架构 综合业务&#xff1a;服务依赖的优化策略 医疗行业&#xff1a;智能诊疗的加速引擎 在医疗行业迈…

javascript-es6 (一)

作用域&#xff08;scope&#xff09; 规定了变量能够被访问的“范围”&#xff0c;离开了这个“范围”变量便不能被访问 局部作用域 函数作用域&#xff1a; 在函数内部声明的变量只能在函数内部被访问&#xff0c;外部无法直接访问 function getSum(){ //函数内部是函数作用…

jenkins-k8s pod方式动态生成slave节点

一. 简述&#xff1a; 使用 Jenkins 和 Kubernetes (k8s) 动态生成 Slave 节点是一种高效且灵活的方式来管理 CI/CD 流水线。通过这种方式&#xff0c;Jenkins 可以根据需要在 Kubernetes 集群中创建和销毁 Pod 来执行任务&#xff0c;从而充分利用集群资源并实现更好的隔离性…

【云安全】云原生-K8S-简介

K8S简介 Kubernetes&#xff08;简称K8S&#xff09;是一种开源的容器编排平台&#xff0c;用于管理容器化应用的部署、扩展和运维。它由Google于2014年开源并交给CNCF&#xff08;Cloud Native Computing Foundation&#xff09;维护。K8S通过提供自动化、灵活的功能&#xf…

aws(学习笔记第二十六课) 使用AWS Elastic Beanstalk

aws(学习笔记第二十六课) 使用aws Elastic Beanstalk 学习内容&#xff1a; AWS Elastic Beanstalk整体架构AWS Elastic Beanstalk的hands onAWS Elastic Beanstalk部署node.js程序包练习使用AWS Elastic Beanstalk的ebcli 1. AWS Elastic Beanstalk整体架构 官方的guide AWS…

反向代理模块。。

1 概念 1.1 反向代理概念 反向代理是指以代理服务器来接收客户端的请求&#xff0c;然后将请求转发给内部网络上的服务器&#xff0c;将从服务器上得到的结果返回给客户端&#xff0c;此时代理服务器对外表现为一个反向代理服务器。 对于客户端来说&#xff0c;反向代理就相当于…

C语言的灵魂——指针(1)

指针是C语言的灵魂&#xff0c;有了指针C语言才能完成一些复杂的程序&#xff1b;没了指针就相当于C语言最精髓的部分被去掉了&#xff0c;可见指针是多么重要。废话不多讲我们直接开始。 指针 一&#xff0c;内存和地址二&#xff0c;编址三&#xff0c;指针变量和地址1&#…

14-6-2C++STL的list

(一&#xff09;list对象的带参数构造 1.list&#xff08;elem);//构造函数将n个elem拷贝给本身 #include <iostream> #include <list> using namespace std; int main() { list<int> lst(3,7); list<int>::iterator it; for(itlst.begi…

Ubuntu Server 安装 XFCE4桌面

Ubuntu Server没有桌面环境&#xff0c;一些软件有桌面环境使用起来才更加方便&#xff0c;所以我尝试安装桌面环境。常用的桌面环境有&#xff1a;GNOME、KDE Plasma、XFCE4等。这里我选择安装XFCE4桌面环境&#xff0c;主要因为它是一个极轻量级的桌面环境&#xff0c;适合内…

一个简单的自适应html5导航模板

一个简单的 HTML 导航模板示例&#xff0c;它包含基本的导航栏结构&#xff0c;同时使用了 CSS 进行样式美化&#xff0c;让导航栏看起来更美观。另外&#xff0c;还添加了一些 JavaScript 代码&#xff0c;用于在移动端实现导航菜单的展开和收起功能。 PHP <!DOCTYPE htm…

实现B-树

一、概述 1.历史 B树&#xff08;B-Tree&#xff09;结构是一种高效存储和查询数据的方法&#xff0c;它的历史可以追溯到1970年代早期。B树的发明人Rudolf Bayer和Edward M. McCreight分别发表了一篇论文介绍了B树。这篇论文是1972年发表于《ACM Transactions on Database S…

无人机微波图像传输数据链技术详解

无人机微波图像传输数据链技术是无人机通信系统中的关键组成部分&#xff0c;它确保了无人机与地面站之间高效、可靠的图像数据传输。以下是对该技术的详细解析&#xff1a; 一、技术原理 无人机微波图像传输数据链主要基于微波通信技术实现。在数据链路中&#xff0c;图像数…

macos的图标过大,这是因为有自己的设计规范

苹果官方链接&#xff1a;App 图标 | Apple Developer Documentation 这个在官方文档里有说明&#xff0c;并且提供了sketch 和 ps 的模板。 figma还提供了模板&#xff1a; Figma