【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法

news2025/1/27 7:04:12

目录

​编辑

​编辑

1.Chapter 2 Why Linear Algebra?

2.Chapter 3 What Is a Vector?


个人主页:Icomi

大家好,我是Icomi,本专栏是我阅读外文原版书《Before Machine Learning》对于文章中我认为能够增进线性代数与机器学习之间的理解的内容的一个输出,希望能够帮助到各位更加深刻的理解线性代数与机器学习。若各位对本系列内容感兴趣,可以给我点个关注跟进内容,我将持续更新。

本专栏与我的《PyTorch入门》结合将理解更深刻。

专栏地址:PyTorch入门

1.Chapter 2 Why Linear Algebra?

There are a lot of us pressing buttons. Still, only a few of us are building them. If you want to succeed as a data scientist, it would be better to take a button-builder path. What this means is that you will have to learn mathematics.

我们很多人都只会按按钮,却只有少数人在制造按钮。如果你想成为一名成功的数据科学家,最好选择成为 “造按钮的人”。这意味着你必须学习数学。

Linear algebra is essential to forming a complete understanding  of machine learning. The applications are countless, and the tech-niques from this discipline belong to a shared collection of algorithms  widely used in artificial intelligence. Its properties and methods allow for faster computation of complex systems and the extraction of  hidden relationships in sets of data.

线性代数对于全面理解机器学习至关重要。它的应用数不胜数,该学科的技术属于人工智能领域广泛使用的算法集合。线性代数的特性和方法能够更快地计算复杂系统,并提取数据集中隐藏的关系。

2.Chapter 3 What Is a Vector?

(1)

You can think of a vector in simple terms as a list of numbers where the position of each item in this structure matters. In machine learning, this will often be the case. For example, if you are analysing the height and weight of a class of students, in this domain, a twodimensional vector will represent each student: 

简单来说,你可以把向量看作是一个数字列表,其中每个元素在这个结构中的位置都很重要。在机器学习中,通常就是这种情况。例如,如果你要分析一个班级学生的身高和体重,在这个领域,一个二维向量可以代表每个学生:

这里V1代表一名学生的身高,V2代表同一名学生的体重。通常情况下,如果你要为另一名学生定义另一个向量,各量值的位置应该保持一致。所以第一个元素是身高,第二个是体重。这种看待向量的方式常被称为 “计算机科学定义”。我不确定这种说法是否准确,但它确实是一种运用向量的方式。另一种与线性代数联系更紧密的对这些元素的解释是,把向量看作是一个箭头,其方向由坐标决定。它的起点位于原点,也就是像、平面这样的坐标系中的(0,0)点。括号里的数字就是向量的坐标,用于表明箭头的落点:

(2)向量加法:

We can explore a visualization to understand these so-called translations better and solidify this concept of vector addition:One can utilize vector addition in many real-life scenarios. For example, my cousin has a kid with these long arms who can throw a golf ball at 60 km/h:One day we were driving a car north at 60 km/h. From the back seat, he threw this golf ball through the window directly to the east. If we want to comprehend the direction and velocity of the ball relative to the ground, we can use vector addition. From vector

我们可以通过可视化的方式来更好地理解这些所谓的平移,并强化向量加法这一概念:向量加法在许多现实场景中都能派上用场。例如,我表哥家孩子胳膊很长,能以每小时 60 公里的速度扔出高尔夫球。有一天,我们以每小时 60 公里的速度向北驾车行驶。他从后座将这个高尔夫球直接朝车窗外向东扔出。如果我们想了解球相对于地面的方向和速度,我们可以使用向量加法。从向量…… (这里 “From vector” 之后原文似乎不完整 )通过向量加法,我们可以知道球会向东北方向运动。如果你想计算球的速度,可以使用勾股定理,即 。这是一个简单的例子,并且忽略了风的阻力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2283828.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot开发(二)Spring Boot项目构建、Bootstrap基础知识

1. Spring Boot项目构建 1.1. 简介 基于官方网站https://start.spring.io进行项目的创建. 1.1.1. 简介 Spring Boot是基于Spring4框架开发的全新框架,设计目的是简化搭建及开发过程,并不是对Spring功能上的增强,而是提供了一种快速使用Spr…

【PyTorch】4.张量拼接操作

个人主页:Icomi 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch&#xff0…

新电脑安装系统找不到硬盘原因和解决方法来了

有不少网友反馈新电脑采用官方u盘方式装win10或win100出现找不到硬盘是怎么回事?后来研究半天发现是bios中开启了rst(vmd)模式。如果关闭rst模式肯定是可以安装的,但这会影响硬盘性能,有没有办法解决开启rst模式的情况安装win10或win11呢&…

「 机器人 」仿生扑翼飞行器中的“被动旋转机制”概述

前言 在仿生扑翼飞行器的机翼设计中,模仿昆虫翼的被动旋转机制是一项关键技术。其核心思想在于:机翼旋转角度(攻角)并非完全通过主动伺服来控制,而是利用空气动力和惯性力的作用,自然地实现被动调节。以下对这种设计的背景、原理与优势进行详细说明。 1. 背景:昆虫的被动…

Android GLSurfaceView 覆盖其它控件问题 (RK平台)

平台 涉及主控: RK3566 Android: 11/13 问题 在使用GLSurfaceView播放视频的过程中, 增加了一个播放控制面板, 覆盖在视频上方. 默认隐藏setVisibility(View.INVISIBLE);点击屏幕再显示出来. 然而, 在RK3566上这个简单的功能却无法正常工作. 通过缩小视频窗口可以看到, 实际…

【C++】类和对象(五)

1、初始化列表 作用&#xff1a;C提供了初始化列表语法&#xff0c;用来初始化属性。 语法&#xff1a; 构造函数&#xff08;&#xff09;&#xff1a;属性1&#xff08;值1&#xff09;&#xff0c;属性2&#xff08;值2&#xff09;...{}示例&#xff1a; #include<i…

Maven的下载安装配置

maven的下载安装配置 maven是什么 Maven 是一个用于 Java 平台的 自动化构建工具&#xff0c;由 Apache 组织提供。它不仅可以用作包管理&#xff0c;还支持项目的开发、打包、测试及部署等一系列行为 Maven的核心功能 项目构建生命周期管理&#xff1a;Maven定义了项目构建…

Mysql主从复制+MHA实验笔记[特殊字符]

目录 基本概念 工作原理 优势 环境准备&#xff1a;四台centos-其中三台mysql&#xff0c;一台MHA 配置一主两从 安装MHA 配置无密码认证 配置MHA 模拟master故障 基本概念 MySQL 主从复制&#xff1a;是 MySQL 数据库中实现数据冗余、数据备份和高可用性的重要技术手…

面向长文本的多模型协作摘要架构:多LLM文本摘要方法

多LLM摘要框架在每轮对话中包含两个基本步骤:生成和评估。这些步骤在多LLM分散式摘要和集中式摘要中有所不同。在两种策略中,k个不同的LLM都会生成多样化的文本摘要。然而在评估阶段,多LLM集中式摘要方法使用单个LLM来评估摘要并选择最佳摘要,而分散式多LLM摘要则使用k个LLM进行…

Python中容器类型的数据(上)

若我们想将多个数据打包并且统一管理&#xff0c;应该怎么办? Python内置的数据类型如序列(列表、元组等)、集合和字典等可以容纳多项数据&#xff0c;我们称它们为容器类型的数据。 序列 序列 (sequence) 是一种可迭代的、元素有序的容器类型的数据。 序列包括列表 (list)…

[Qt]系统相关-网络编程-TCP、UDP、HTTP协议

目录 前言 一、UDP网络编程 1.Qt项目文件 2.UDP类 QUdpSocket QNetworkDatagram 3.UDP回显服务器案例 细节 服务器设计 客户端设计 二、TCP网络编程 1.TCP类 QTcpServer QTcpSocket 2.TCP回显服务器案例 细节 服务器设计 客户端设计 三、HTTP客户端 1.HTTP…

信息系统管理工程师第6-8章精讲视频及配套千题通关双双发布,附第14章思维导图

这一周发文少&#xff0c;不是我在偷懒&#xff0c;而是在和信管的视频及千题通关“”浴血奋战 &#xff0c;特别是第8章卡了我很久&#xff0c;因为内容实在太多&#xff0c;精讲视频估计都差不多4个小时了&#xff0c;还好终于在春节前拿下&#xff0c;提供给小分队的同学&am…

npm启动前端项目时报错(vue) error:0308010C:digital envelope routines::unsupported

vue 启动项目时&#xff0c;npm run serve 报下面的错&#xff1a; error:0308010C:digital envelope routines::unsupported at new Hash (node:internal/crypto/hash:67:19) at Object.createHash (node:crypto:133:10) at FSReqCallback.readFileAfterClose [as on…

Excel 技巧21 - Excel中整理美化数据实例,Ctrl+T 超级表格(★★★)

本文讲Excel中如何整理美化数据的实例&#xff0c;以及CtrlT 超级表格的常用功能。 目录 1&#xff0c;Excel中整理美化数据 1-1&#xff0c;设置间隔行颜色 1-2&#xff0c;给总销量列设置数据条 1-3&#xff0c;根据总销量设置排序 1-4&#xff0c;加一个销售趋势列 2&…

力扣算法题——11.盛最多水的容器

目录 &#x1f495;1.题目 &#x1f495;2.解析思路 本题思路总览 借助双指针探索规律 从规律到代码实现的转化 双指针的具体实现 代码整体流程 &#x1f495;3.代码实现 &#x1f495;4.完结 二十七步也能走完逆流河吗 &#x1f495;1.题目 &#x1f495;2.解析思路…

微服务学习-服务调用组件 OpenFeign 实战

1. OpenFeign 接口方法编写规范 1.1. 在编写 OpenFeign 接口方法时&#xff0c;需要遵循以下规范 1.1.1.1. 接口中的方法必须使用 RequestMapping、GetMapping、PostMapping 等注解声明 HTTP 请求的类型。 1.1.1.2. 方法的参数可以使用 RequestParam、RequestHeader、PathVa…

Java Web-Tomcat Servlet

Web服务器-Tomcat Web服务器简介 Web 服务器是一种软件程序&#xff0c;它主要用于在网络上接收和处理客户端&#xff08;如浏览器&#xff09;发送的 HTTP 请求&#xff0c;并返回相应的网页内容或数据。以下是关于 Web 服务器的详细介绍&#xff1a; 功能 接收请求&#…

深度解析:基于Vue 3的教育管理系统架构设计与优化实践

一、项目架构分析 1. 技术栈全景 项目采用 Vue 3 TypeScript Tailwind CSS 技术组合&#xff0c;体现了现代前端开发的三大趋势&#xff1a; 响应式编程&#xff1a;通过Vue 3的Composition API实现细粒度响应 类型安全&#xff1a;约60%的组件采用TypeScript编写 原子化…

CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测(Matlab完整源码和数据)

CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测&#xff08;Matlab完整源码和数据&#xff09; 目录 CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测&#xff08;Matlab完整源码和数据&#xff09;预测效果基本介绍 CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测一…

docker安装MySQL8:docker离线安装MySQL、docker在线安装MySQL、MySQL镜像下载、MySQL配置、MySQL命令

一、镜像下载 1、在线下载 在一台能连外网的linux上执行docker镜像拉取命令 docker pull mysql:8.0.41 2、离线包下载 两种方式&#xff1a; 方式一&#xff1a; -&#xff09;在一台能连外网的linux上安装docker执行第一步的命令下载镜像 -&#xff09;导出 # 导出镜…