第17篇:python进阶:详解数据分析与处理

news2025/1/26 17:11:03

第17篇:数据分析与处理

内容简介

本篇文章将深入探讨数据分析与处理在Python中的应用。您将学习如何使用pandas库进行数据清洗与分析,掌握matplotlibseaborn库进行数据可视化,以及处理大型数据集的技巧。通过丰富的代码示例和实战案例,您将能够高效地进行数据处理、分析和可视化,为数据驱动的决策提供有力支持。


目录

  1. 数据分析与处理概述
    • 什么是数据分析与处理
    • 数据分析的流程
  2. 使用pandas进行数据清洗与分析
    • pandas简介
    • 数据导入与导出
    • 数据清洗
      • 处理缺失值
      • 数据转换与标准化
      • 去除重复数据
    • 数据分析与操作
      • 数据筛选与过滤
      • 数据分组与聚合
      • 数据合并与连接
  3. 数据可视化
    • matplotlib简介
    • seaborn简介
    • 使用matplotlib进行基本绘图
      • 折线图
      • 柱状图
      • 散点图
    • 使用seaborn进行高级绘图
      • 热力图
      • 箱线图
      • 小提琴图
  4. 处理大型数据集
    • 优化pandas性能
      • 使用合适的数据类型
      • 向量化操作
      • 避免使用循环
    • 使用Dask处理大数据
      • Dask简介
      • 基本使用方法
      • pandas的集成
    • 分布式数据处理工具
      • Apache Spark
      • 其他工具介绍
  5. 示例代码
    • pandas数据清洗与分析示例
    • matplotlib数据可视化示例
    • seaborn数据可视化示例
    • 处理大型数据集示例
  6. 常见问题及解决方法
    • 问题1:如何处理pandas中的缺失数据?
    • 问题2:matplotlibseaborn的选择标准是什么?
    • 问题3:如何提升pandas处理大型数据集的效率?
    • 问题4:在数据可视化中如何选择合适的图表类型?
  7. 总结

数据分析与处理概述

什么是数据分析与处理

数据分析与处理是指通过对数据进行收集、清洗、转换、建模和可视化等步骤,从中提取有价值的信息和见解的过程。数据分析在各行各业中都有广泛应用,如商业决策、科学研究、市场营销等。

数据分析的流程

数据分析通常包括以下几个步骤:

  1. 数据收集:获取原始数据,可以来自数据库、API、文件等。
  2. 数据清洗:处理缺失值、异常值、重复数据等,确保数据质量。
  3. 数据转换:对数据进行格式转换、标准化、特征工程等。
  4. 数据分析:应用统计方法和机器学习算法,发现数据中的模式和关系。
  5. 数据可视化:通过图表和图形展示分析结果,帮助理解和传达信息。
  6. 结果解释与决策:根据分析结果制定相应的策略和决策。

使用pandas进行数据清洗与分析

pandas简介

pandas是Python中最常用的数据分析和数据处理库,提供了强大的数据结构和函数,特别是DataFrameSeries,能够高效地处理和分析结构化数据。

数据导入与导出

pandas支持多种数据格式的导入与导出,如CSV、Excel、JSON、SQL数据库等。

导入数据示例

import pandas as pd

# 从CSV文件导入数据
df = pd.read_csv('data.csv')

# 从Excel文件导入数据
df_excel = pd.read_excel('data.xlsx', sheet_name='Sheet1')

# 从JSON文件导入数据
df_json = pd.read_json('data.json')

导出数据示例

# 导出到CSV文件
df.to_csv('output.csv', index=False)

# 导出到Excel文件
df.to_excel('output.xlsx', sheet_name='Sheet1', index=False)

# 导出到JSON文件
df.to_json('output.json', orient='records', lines=True)

数据清洗

数据清洗是数据分析的重要步骤,确保数据的准确性和一致性。

处理缺失值

缺失值在数据集中普遍存在,pandas提供了多种方法处理缺失值。

检测缺失值

# 检查每列的缺失值数量
print(df.isnull().sum())

# 检查整个DataFrame是否有缺失值
print(df.isnull().values.any())

处理缺失值

  • 删除缺失值

    # 删除包含任何缺失值的行
    df_cleaned = df.dropna()
    
    # 删除所有列都为缺失值的行
    df_cleaned = df.dropna(how='all')
    
  • 填充缺失值

    # 用特定值填充缺失值
    df_filled = df.fillna(0)
    
    # 用前一个有效值填充缺失值
    df_filled = df.fillna(method='ffill')
    
    # 用后一个有效值填充缺失值
    df_filled = df.fillna(method='bfill')
    
数据转换与标准化

数据转换包括数据类型转换、数据标准化等操作。

数据类型转换

# 将某列转换为整数类型
df['age'] = df['age'].astype(int)

# 将某列转换为日期类型
df['date'] = pd.to_datetime(df['date'])

数据标准化

# 标准化数值列
df['salary_normalized'] = (df['salary'] - df['salary'].mean()) / df['salary'].std()
去除重复数据

重复数据可能会影响分析结果,pandas提供了便捷的方法去除重复数据。

# 查看重复行
duplicates = df[df.duplicated()]
print(duplicates)

# 删除重复行,保留第一次出现
df_unique = df.drop_duplicates()

# 删除重复行,保留最后一次出现
df_unique = df.drop_duplicates(keep='last')

数据分析与操作

pandas提供了丰富的功能进行数据筛选、分组、聚合和合并等操作。

数据筛选与过滤

筛选特定行

# 筛选年龄大于30的行
df_filtered = df[df['age'] > 30]

# 使用多个条件筛选
df_filtered = df[(df['age'] > 30) & (df['gender'] == 'F')]

选择特定列

# 选择单列
age_series = df['age']

# 选择多列
subset = df[['name', 'age', 'salary']]
数据分组与聚合

分组操作

# 按性别分组
grouped = df.groupby('gender')

# 计算每组的平均年龄
average_age = grouped['age'].mean()
print(average_age)

聚合操作

# 计算每组的总薪资和平均薪资
salary_summary = grouped['salary'].agg(['sum', 'mean'])
print(salary_summary)
数据合并与连接

合并操作

# 合并两个DataFrame,按共同列
merged_df = pd.merge(df1, df2, on='employee_id', how='inner')

# 外连接
merged_df = pd.merge(df1, df2, on='employee_id', how='outer')

连接操作

# 上下拼接
concatenated_df = pd.concat([df1, df2], axis=0)

# 左右拼接
concatenated_df = pd.concat([df1, df2], axis=1)

数据可视化

matplotlib简介

matplotlib是Python中最基础且功能强大的绘图库,能够创建各种类型的静态、动态和交互式图表。它提供了类似MATLAB的绘图接口,适用于需要高度自定义的可视化需求。

seaborn简介

seaborn是基于matplotlib构建的高级绘图库,专注于统计数据可视化。它简化了复杂图表的创建过程,并提供了美观的默认样式,适合快速生成专业级别的图表。

使用matplotlib进行基本绘图

折线图

折线图适用于展示数据随时间或顺序的变化趋势。

import matplotlib.pyplot as plt

# 示例数据
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May']
sales = [250, 300, 280, 350, 400]

plt.figure(figsize=(8, 5))
plt.plot(months, sales, marker='o', linestyle='-', color='b')
plt.title('月销售额趋势')
plt.xlabel('月份')
plt.ylabel('销售额')
plt.grid(True)
plt.show()
柱状图

柱状图适用于比较不同类别的数据。

# 示例数据
products = ['Widget', 'Gizmo', 'Gadget']
sales = [150, 200, 120]

plt.figure(figsize=(8, 5))
plt.bar(products, sales, color=['skyblue', 'salmon', 'lightgreen'])
plt.title('产品销售量比较')
plt.xlabel('产品')
plt.ylabel('销售量')
plt.show()
散点图

散点图适用于展示两个变量之间的关系。

# 示例数据
import numpy as np

np.random.seed(0)
x = np.random.rand(50)
y = x + np.random.normal(0, 0.1, 50)

plt.figure(figsize=(8, 5))
plt.scatter(x, y, color='purple')
plt.title('变量X与Y的关系')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()

使用seaborn进行高级绘图

热力图

热力图适用于展示变量之间的相关性或数据密度。

import seaborn as sns

# 示例数据
data = sns.load_dataset('iris')
corr = data.corr()

plt.figure(figsize=(8, 6))
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.title('Iris数据集特征相关性热力图')
plt.show()
箱线图

箱线图适用于展示数据的分布情况及异常值。

plt.figure(figsize=(8, 5))
sns.boxplot(x='species', y='sepal_length', data=data)
plt.title('不同物种的萼片长度分布')
plt.xlabel('物种')
plt.ylabel('萼片长度 (cm)')
plt.show()
小提琴图

小提琴图结合了箱线图和密度图的特点,展示数据分布的更详细信息。

plt.figure(figsize=(8, 5))
sns.violinplot(x='species', y='petal_length', data=data, palette='Pastel1')
plt.title('不同物种的花瓣长度分布')
plt.xlabel('物种')
plt.ylabel('花瓣长度 (cm)')
plt.show()

处理大型数据集

优化pandas性能

处理大型数据集时,pandas的性能可能成为瓶颈。以下是一些优化方法:

使用合适的数据类型

合理选择数据类型可以显著减少内存使用,提高处理速度。

# 查看数据类型
print(df.dtypes)

# 将整数列转换为更小的整数类型
df['age'] = df['age'].astype('int8')

# 将分类数据转换为类别类型
df['gender'] = df['gender'].astype('category')
向量化操作

尽量使用pandasnumpy的向量化操作,避免使用显式的Python循环。

# 向量化计算新列
df['total_price'] = df['quantity'] * df['price']

# 使用`apply`进行高效计算
df['discounted_price'] = df['total_price'].apply(lambda x: x * 0.9)
避免使用循环

循环在pandas中效率较低,尽量使用内置函数和方法。

# 不推荐:使用循环进行数据操作
for index, row in df.iterrows():
    df.at[index, 'total'] = row['quantity'] * row['price']

# 推荐:使用向量化操作
df['total'] = df['quantity'] * df['price']

使用Dask处理大数据

Dask是一个并行计算库,能够处理比内存更大的数据集,扩展pandas的功能。

Dask简介

Dask提供了与pandas类似的接口,但支持延迟计算和并行处理,适合处理大型数据集和复杂的计算任务。

基本使用方法
import dask.dataframe as dd

# 从CSV文件读取数据
ddf = dd.read_csv('large_data.csv')

# 进行数据清洗和转换
ddf = ddf.dropna()
ddf['total'] = ddf['quantity'] * ddf['price']

# 进行分组与聚合
result = ddf.groupby('category')['total'].sum().compute()
print(result)
pandas的集成

Dask可以与pandas无缝集成,允许在必要时转换为pandas对象进行进一步处理。

# 将Dask DataFrame转换为pandas DataFrame
pdf = ddf.compute()

# 继续使用pandas进行处理
pdf['average'] = pdf['total'] / pdf['quantity']

分布式数据处理工具

对于极其庞大的数据集和复杂的计算任务,分布式数据处理工具如Apache Spark提供了强大的能力。

Apache Spark

Apache Spark是一个快速、通用的大数据处理引擎,支持分布式数据处理和机器学习任务。PySpark是Spark的Python API,允许在Python中编写Spark应用。

基本使用示例

from pyspark.sql import SparkSession

# 初始化SparkSession
spark = SparkSession.builder.appName('DataAnalysis').getOrCreate()

# 读取数据
df = spark.read.csv('large_data.csv', header=True, inferSchema=True)

# 数据清洗
df_clean = df.dropna()

# 数据分析
df_grouped = df_clean.groupBy('category').sum('price')

# 显示结果
df_grouped.show()

# 关闭SparkSession
spark.stop()
其他工具介绍
  • Vaex:高性能的DataFrame库,适用于处理大规模数据集,支持内存映射和延迟计算。
  • Modin:通过多线程和分布式计算加速pandas操作,提供与pandas完全兼容的API。
  • Ray:用于构建分布式应用的框架,支持并行和分布式数据处理任务。

示例代码

pandas数据清洗与分析示例

以下示例展示了如何使用pandas进行数据导入、清洗、分析和导出。

import pandas as pd

def clean_and_analyze(csv_file):
    # 导入数据
    df = pd.read_csv(csv_file)
    print("原始数据概览:")
    print(df.head())

    # 处理缺失值
    df = df.dropna()

    # 转换数据类型
    df['age'] = df['age'].astype(int)
    df['gender'] = df['gender'].astype('category')

    # 添加总价列
    df['total_price'] = df['quantity'] * df['price']

    # 分组聚合
    sales_summary = df.groupby('category')['total_price'].sum()
    print("\n按类别分组的总销售额:")
    print(sales_summary)

    # 导出清洗后的数据
    df.to_csv('cleaned_data.csv', index=False)
    print("\n清洗后的数据已保存到'cleaned_data.csv'")

# 使用示例
clean_and_analyze('sales_data.csv')

输出(假设sales_data.csv内容如下):

原始数据概览:
  name  age gender category  quantity  price
0  A    25      M      A        5     20.0
1  B    30      F      B        3     15.0
2  C    22      M      A        2     20.0
3  D    28      F      C        4     25.0
4  E    35      M      B        1     15.0

按类别分组的总销售额:
category
A    140.0
B     60.0
C    100.0
Name: total_price, dtype: float64

清洗后的数据已保存到'cleaned_data.csv'

matplotlib数据可视化示例

以下示例展示了如何使用matplotlib绘制销售额折线图和柱状图。

import matplotlib.pyplot as plt
import pandas as pd

def plot_sales_trends(csv_file):
    # 导入数据
    df = pd.read_csv(csv_file)

    # 按月份分组计算总销售额
    monthly_sales = df.groupby('month')['total_price'].sum()

    # 绘制折线图
    plt.figure(figsize=(10, 6))
    plt.plot(monthly_sales.index, monthly_sales.values, marker='o', linestyle='-', color='b')
    plt.title('月销售额趋势')
    plt.xlabel('月份')
    plt.ylabel('销售额')
    plt.grid(True)
    plt.show()

    # 绘制柱状图
    plt.figure(figsize=(10, 6))
    plt.bar(monthly_sales.index, monthly_sales.values, color='skyblue')
    plt.title('月销售额柱状图')
    plt.xlabel('月份')
    plt.ylabel('销售额')
    plt.show()

# 使用示例
plot_sales_trends('cleaned_data.csv')

输出

两张图表分别展示了月销售额的折线趋势和柱状比较。

seaborn数据可视化示例

以下示例展示了如何使用seaborn绘制热力图和箱线图。

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

def visualize_data(csv_file):
    # 导入数据
    df = pd.read_csv(csv_file)

    # 计算相关性矩阵
    corr_matrix = df.corr()

    # 绘制热力图
    plt.figure(figsize=(8, 6))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
    plt.title('特征相关性热力图')
    plt.show()

    # 绘制箱线图
    plt.figure(figsize=(8, 6))
    sns.boxplot(x='category', y='total_price', data=df)
    plt.title('各类别销售额分布箱线图')
    plt.xlabel('类别')
    plt.ylabel('总销售额')
    plt.show()

# 使用示例
visualize_data('cleaned_data.csv')

输出

两张图表分别展示了数据特征的相关性热力图和各类别销售额的分布箱线图。

处理大型数据集示例

以下示例展示了如何使用Dask处理大型CSV文件,并进行分组聚合分析。

import dask.dataframe as dd

def process_large_data(csv_file):
    # 使用Dask读取大型CSV文件
    ddf = dd.read_csv(csv_file)

    # 处理缺失值
    ddf = ddf.dropna()

    # 添加总价列
    ddf['total_price'] = ddf['quantity'] * ddf['price']

    # 按类别分组并计算总销售额
    sales_summary = ddf.groupby('category')['total_price'].sum().compute()
    print("按类别分组的总销售额:")
    print(sales_summary)

# 使用示例
process_large_data('large_sales_data.csv')

输出(假设large_sales_data.csv内容如下):

按类别分组的总销售额:
category
A    150000.0
B     80000.0
C    120000.0
Name: total_price, dtype: float64

常见问题及解决方法

问题1:如何处理pandas中的缺失数据?

原因:缺失数据可能会影响数据分析的准确性和结果。

解决方法

  1. 检测缺失数据

    • 使用isnull()isna()方法检测缺失值。
    • 使用info()方法查看数据概况。
  2. 处理缺失数据

    • 删除缺失值:使用dropna()方法删除包含缺失值的行或列。
    • 填充缺失值:使用fillna()方法填充缺失值,可以选择特定值、均值、中位数或前后值等。

示例

import pandas as pd

# 创建示例DataFrame
data = {'A': [1, 2, None, 4],
        'B': [5, None, 7, 8],
        'C': [9, 10, 11, None]}
df = pd.DataFrame(data)

# 检测缺失值
print(df.isnull().sum())

# 删除包含任何缺失值的行
df_dropped = df.dropna()
print(df_dropped)

# 用列的均值填充缺失值
df_filled = df.fillna(df.mean())
print(df_filled)

输出

A    1
B    1
C    1
dtype: int64

     A    B     C
0  1.0  5.0   9.0

     A    B     C
0  1.0  5.0   9.0
1  2.0  6.0  10.0
2  2.333333  7.0  11.0
3  4.0  8.0  10.0

问题2:matplotlibseaborn的选择标准是什么?

原因matplotlibseaborn都是强大的数据可视化工具,选择合适的库可以提高工作效率和图表质量。

解决方法

  1. 自定义需求

    • 如果需要高度自定义的图表,适合使用matplotlib
    • 如果需要快速生成美观的统计图表,适合使用seaborn
  2. 统计可视化

    • seaborn内置了许多统计图表,如箱线图、小提琴图、热力图等,适合用于统计数据的可视化。
  3. 复杂图表

    • 对于复杂的多层次图表,matplotlib提供了更灵活的控制。
  4. 集成使用

    • 可以结合使用matplotlibseaborn,先用seaborn绘制基础图表,再使用matplotlib进行进一步的自定义。

示例

import matplotlib.pyplot as plt
import seaborn as sns

# 使用seaborn绘制箱线图
sns.boxplot(x='category', y='total_price', data=df)
plt.title('各类别销售额分布')
plt.show()

# 使用matplotlib进行进一步自定义
plt.figure(figsize=(10, 6))
sns.boxplot(x='category', y='total_price', data=df)
plt.title('各类别销售额分布')
plt.xlabel('类别')
plt.ylabel('总销售额')
plt.grid(True)
plt.show()

问题3:如何提升pandas处理大型数据集的效率?

原因:当数据集非常大时,pandas的内存占用和处理速度可能成为瓶颈。

解决方法

  1. 优化数据类型

    • 使用更小的数据类型,如int8float32,减少内存使用。
  2. 分块读取数据

    • 使用chunksize参数分块读取大文件,逐块处理数据。
    import pandas as pd
    
    chunksize = 10 ** 6
    for chunk in pd.read_csv('large_data.csv', chunksize=chunksize):
        process(chunk)
    
  3. 使用并行计算库

    • 使用DaskModin等库,利用多核处理器加速数据处理。
  4. 减少内存复制

    • 尽量避免不必要的数据复制,使用inplace=True参数进行原地操作。
  5. 向量化操作

    • 利用pandasnumpy的向量化功能,避免使用循环。

示例

import pandas as pd

# 优化数据类型
df = pd.read_csv('large_data.csv', dtype={'age': 'int8', 'gender': 'category'})

# 分块处理
chunksize = 500000
total = 0
for chunk in pd.read_csv('large_data.csv', chunksize=chunksize):
    total += chunk['quantity'].sum()
print(f"总数量: {total}")

问题4:在数据可视化中如何选择合适的图表类型?

原因:不同的图表类型适用于不同的数据和分析目的,选择合适的图表能够更有效地传达信息。

解决方法

  1. 了解数据类型和关系

    • 分类数据、数值数据、时间序列数据等需要不同的图表类型。
  2. 确定可视化目的

    • 比较、分布、关系、组成等不同的可视化目的对应不同的图表。
  3. 选择合适的图表

    可视化目的图表类型
    比较柱状图、条形图、折线图
    分布直方图、箱线图、小提琴图
    关系散点图、气泡图、热力图
    组成饼图、堆叠柱状图、面积图
  4. 考虑图表的可读性和美观性

    • 避免过度复杂的图表,保持清晰和简洁。

示例

  • 比较:使用柱状图比较不同类别的销售额。
  • 分布:使用箱线图展示销售额的分布情况。
  • 关系:使用散点图分析销售数量与价格的关系。
  • 组成:使用饼图展示各类别在总销售额中的比例。

总结

在本篇文章中,我们深入探讨了数据分析与处理的核心内容,重点介绍了如何使用pandas进行数据清洗与分析,掌握了matplotlibseaborn进行数据可视化的方法,并学习了处理大型数据集的优化技巧。通过丰富的代码示例和实战案例,您已经具备了进行高效数据分析和处理的基本能力。

学习建议

  1. 实践项目:尝试在实际项目中应用所学的pandas和可视化工具,如数据报告、商业分析或科学研究。
  2. 深入学习pandas:探索pandas的高级功能,如时间序列分析、合并复杂数据集等,提升数据处理能力。
  3. 掌握高级可视化技术:学习使用seaborn的高级功能和matplotlib的自定义技巧,创建更具表现力的图表。
  4. 处理更大规模的数据:通过学习DaskModin等工具,提升处理大型数据集的能力。
  5. 学习统计与机器学习基础:结合数据分析,学习统计学和机器学习的基本概念和方法,扩展分析深度。
  6. 参与数据科学社区:加入数据科学相关的社区和论坛,分享经验,学习他人的最佳实践。
  7. 阅读相关书籍和文档:如《Python for Data Analysis》、《Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow》,系统性地提升数据分析与处理能力。

接下来的系列文章将继续深入探讨Python的机器学习与人工智能,帮助您进一步掌握Python在智能应用中的核心概念和技术。保持学习的热情,持续实践,您将逐步成为一名优秀的数据科学家!


如果您有任何问题或需要进一步的帮助,请随时在评论区留言或联系相关技术社区。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2283544.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Maui】提示消息的扩展

文章目录 前言一、问题描述二、解决方案三、软件开发(源码)3.1 消息扩展库3.2 消息提示框使用3.3 错误消息提示使用3.4 问题选择框使用 四、项目展示 前言 .NET 多平台应用 UI (.NET MAUI) 是一个跨平台框架,用于使用 C# 和 XAML 创建本机移…

【2025最新计算机毕业设计】基于SSM房屋租赁平台【提供源码+答辩PPT+文档+项目部署】(高质量源码,可定制,提供文档,免费部署到本地)

作者简介:✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌ 主要内容:🌟Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能…

(开源)基于Django+Yolov8+Tensorflow的智能鸟类识别平台

1 项目简介(开源地址在文章结尾) 系统旨在为了帮助鸟类爱好者、学者、动物保护协会等群体更好的了解和保护鸟类动物。用户群体可以通过平台采集野外鸟类的保护动物照片和视频,甄别分类、实况分析鸟类保护动物,与全世界各地的用户&…

【转帖】eclipse-24-09版本后,怎么还原原来版本的搜索功能

【1】原贴地址:eclipse - 怎么还原原来版本的搜索功能_eclipse打开类型搜索类功能失效-CSDN博客 https://blog.csdn.net/sinat_32238399/article/details/145113105 【2】原文如下: 更新eclipse-24-09版本后之后,新的搜索功能(CT…

git基础指令大全

版本控制 git管理文件夹 进入要管理的文件夹 — 进入 初始化(提名) git init 管理文件夹 生成版本 .git ---- git在管理文件夹时,版本控制的信息 生成版本 git status 检测当前文件夹下的文件状态 (检测,检测之后就要管理了…

Android实训九 数据存储和访问

实训9 数据存储和访问 一、【实训目的】 1、 SharedPreferences存储数据; 2、 借助Java的I/O体系实现文件的存储, 3、使用Android内置的轻量级数据库SQLite存储数据; 二、【实训内容】 1、实现下图所示的界面,实现以下功能: 1&#xff…

[STM32 标准库]定时器输出PWM配置流程 PWM模式解析

前言: 本文内容基本来自江协,整理起来方便日后开发使用。MCU:STM32F103C8T6。 一、配置流程 1、开启GPIO,TIM的时钟 /*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //开启TIM2的时钟RCC_APB2PeriphClockC…

如何跨互联网adb连接到远程手机-蓝牙电话集中维护

如何跨互联网adb连接到远程手机-蓝牙电话集中维护 --ADB连接专题 一、前言 随便找一个手机,安装一个App并简单设置一下,就可以跨互联网的ADB连接到这个手机,从而远程操控这个手机做各种操作。你敢相信吗?而这正是本篇想要描述的…

将 OneLake 数据索引到 Elasticsearch - 第二部分

作者:来自 Elastic Gustavo Llermaly 及 Jeffrey Rengifo 本文分为两部分,第二部分介绍如何使用自定义连接器将 OneLake 数据索引并搜索到 Elastic 中。 在本文中,我们将利用第 1 部分中学到的知识来创建 OneLake 自定义 Elasticsearch 连接器…

Android Studio:视图绑定的岁月变迁(2/100)

一、博文导读 本文是基于Android Studio真实项目,通过解析源码了解真实应用场景,写文的视角和读者是同步的,想到看到写到,没有上帝视角。 前期回顾,本文是第二期。 private Unbinder mUnbinder; 只是声明了一个 接口…

私有包上传maven私有仓库nexus-2.9.2

一、上传 二、获取相应文件 三、最后修改自己的pom文件

Qt监控系统辅屏预览/可以同时打开4个屏幕预览/支持5x64通道预览/onvif和rtsp接入/性能好

一、前言说明 在监控系统中,一般主界面肯定带了多个通道比如16/64通道的画面预览,随着电脑性能的增强和多屏幕的发展,再加上现在监控摄像头数量的增加,越来越多的用户希望在不同的屏幕预览不同的实时画面,一个办法是打…

LabVIEW心音心电同步采集与实时播放

开发了一个基于LabVIEW开发的心音心电同步采集与实时播放系统。该系统可以同时采集心音和心电信号,并通过LabVIEW的高级功能实现这些信号的实时显示和播放。系统提升心脏疾病诊断的准确性和效率,使医生能够在观察心音图的同时进行听诊。 ​ 项目背景 心…

深入解析ncnn::Net类——高效部署神经网络的核心组件

最近在学习ncnn推理框架,下面整理了ncnn::Net 的使用方法。 在移动端和嵌入式设备上进行高效的神经网络推理,要求框架具备轻量化、高性能以及灵活的扩展能力。作为腾讯开源的高性能神经网络推理框架,ncnn在这些方面表现出色。而在ncnn的核心…

前端【8】HTML+CSS+javascript实战项目----实现一个简单的待办事项列表 (To-Do List)

目录 一、功能需求 二、 HTML 三、CSS 四、js 1、绑定事件与初始设置 2.、绑定事项 (1)添加操作: (2)完成操作 (3)删除操作 (4)修改操作 3、完整js代码 总结…

程序诗篇里的灵动笔触:指针绘就数据的梦幻蓝图<1>

大家好啊,我是小象٩(๑ω๑)۶ 我的博客:Xiao Xiangζั͡ޓއއ 很高兴见到大家,希望能够和大家一起交流学习,共同进步。 这一节我们来学习指针的相关知识,学习内存和地址,指针变量和地址,包…

積分方程與簡單的泛函分析6.有連續對稱核的弗雷德霍姆積分算子的特徵值

1)def弗雷德霍姆算子的核函數定義 定义: 设 是定义在矩形区域 上的函数。 若满足以下条件,则称 为弗雷德霍姆算子的核函数: 实值性: 是实值函数,即对于任意的 ,。 这是因为在许多实际的物理和数学问题中,所涉及的量往往是实数值,例如在积分方程描述的物理模型中,…

AI编程工具使用技巧:在Visual Studio Code中高效利用阿里云通义灵码

AI编程工具使用技巧:在Visual Studio Code中高效利用阿里云通义灵码 前言一、通义灵码介绍1.1 通义灵码简介1.2 主要功能1.3 版本选择1.4 支持环境 二、Visual Studio Code介绍1.1 VS Code简介1.2 主要特点 三、安装VsCode3.1下载VsCode3.2.安装VsCode3.3 打开VsCod…

kettle与Springboot的集成方法,完整支持大数据组件

目录 概要整体架构流程技术名词解释技术细节小结 概要 在现代数据处理和ETL(提取、转换、加载)流程中,Kettle(Pentaho Data Integration, PDI)作为一种强大的开源ETL工具,被广泛应用于各种数据处理场景。…

GitHub Actions 使用需谨慎:深度剖析其痛点与替代方案

在持续集成与持续部署(CI/CD)领域,GitHub Actions 曾是众多开发者的热门选择,但如今,其弊端逐渐显现,让不少人在使用前不得不深思熟虑。 团队由大约 15 名工程师组成,采用基于主干的开发方式&am…