总结8..

news2025/1/27 12:19:37

 #include <stdio.h>

// 定义结构体表示二叉树节点,包含左右子节点编号

struct node {

    int l;

    int r;

} tree[100000];

// 全局变量记录二叉树最大深度,初始为0

int ans = 0;

// 深度优先搜索函数

// pos: 当前节点在数组中的位置,deep: 当前深度

void dfs(int pos, int deep) {

    // 若为叶子节点

    if (tree[pos].l == 0 && tree[pos].r == 0) {

        if (deep > ans) ans = deep; // 更新最大深度

        return;

    }

    dfs(tree[pos].l, deep + 1); // 递归搜索左子树

    dfs(tree[pos].r, deep + 1); // 递归搜索右子树

}

 

int main() {

    int n;

    scanf("%d", &n); // 输入节点数

 

    // 输入每个节点的左右子节点编号

    for (int i = 1; i <= n; i++) {

        scanf("%d %d", &tree[i].l, &tree[i].r);

    }

    dfs(1, 1); // 从根节点开始搜索,初始深度为1

    printf("%d\n", ans); // 输出最大深度

    return 0;

}

 #include <stdio.h>

// 定义结构体 node 表示二叉树的节点,每个节点包含左子节点 l 和右子节点 r

struct node {

    char l;

    char r;

} tree[200];

// 深度优先搜索函数,用于实现二叉树的先序遍历(根 - 左 - 右)

// pos: 当前正在处理的节点值

void dfs(char pos) {

    // 输出当前节点的值,实现先序遍历中先访问根节点的操作

    printf("%c", pos);

    // 如果当前节点的左子节点不是 '*'(这里 '*' 表示空节点),则递归遍历左子树

    if (tree[pos].l!= '*') {

        dfs(tree[pos].l);

    }

    // 如果当前节点的右子节点不是 '*'(这里 '*' 表示空节点),则递归遍历右子树

    if (tree[pos].r!= '*') {

        dfs(tree[pos].r);

    }

}

 

int main() {

    int n;

    char a, b;

    // 读取二叉树的节点个数

    scanf("%d", &n);

    // 循环读取每个节点的信息

    for (int i = 1; i <= n; i++) {

        // 读取当前节点的值

        scanf(" %c", &a);

        // 记录第一个节点的值,作为二叉树的根节点

        if (i == 1) {

            b = a;

        }

        // 读取当前节点的左子节点和右子节点的值

        scanf("%c%c", &tree[a].l, &tree[a].r);

    }

    // 从根节点开始进行深度优先搜索(先序遍历)

    dfs(b);

    return 0;

}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2283399.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RabbitMQ 仲裁队列 -- 解决 RabbitMQ 集群数据不同步的问题

1.问题情景 当我们搭建了一个 RabbitMQ 集群后是存在问题的,也就是数据不同步.我们可以来看下是什么问题 1. 1 添加队列 ①:选择虚拟机(需要保证操作⽤户对当前虚拟机有操作权限) ②:设置队列名称 ③:持久化队列 ④:指定队列所在主节点,其他为从节点分别以 rabbit 节点和 rabb…

环境变量配置与问题解决

目录 方法 配置了还是运行不了想要的东西 解决方案 为什么 解决方案 方法 方法一&#xff1a;此电脑右击-属性-相关链接-高级系统设置-环境变量&#xff08;N&#xff09;-系统变量里面找到Path-三个确定】 方法二&#xff1a;winr cmd 黑框输入sysdm.cpl&#xff0c;后面…

js 数据组合,一级结构组合成父子嵌套数组结构

1.方法 buildDeptTree(deptData) { //构建树状部门// 创建一个 map 来存储 deptId 和对应的部门对象const deptMap new Map();// 初始化每个部门对象的 children 属性为空数组deptData.forEach(dept > {dept.children [];deptMap.set(dept.deptId, dept);});// 构建树形结…

Python GUI 开发 | PySide6 PyQt6 学习手册

本文是个 Python GUI 开发的目录&#xff0c;方便读者系统性学习的&#xff0c;笔者后续会满满填充此目录中的内容&#xff0c;感兴趣的小伙伴可以关注一手。&#xff08;主要是偏向 PySide6 方向的&#xff09; 0x01&#xff1a;PySide6 & PyQt6 基础入门 0x0101&#xff…

扣子平台音频功能:让声音也能“智能”起来

在数字化时代&#xff0c;音频内容的重要性不言而喻。无论是在线课程、有声读物&#xff0c;还是各种多媒体应用&#xff0c;音频都是传递信息、增强体验的关键元素。扣子平台的音频功能&#xff0c;为开发者和内容创作者提供了一个强大而灵活的工具&#xff0c;让音频的使用和…

mongoDB常见指令

即使我们自己开发用不到mongoDB&#xff0c;但是接手别人项目的时候&#xff0c;别人如果用了&#xff0c;我们也要会简单调试一下 虽然mongoDB用的不是sql语句&#xff0c;但语句的逻辑都是相似的&#xff0c;比如查看数据库、数据表&#xff0c;增删改查这些 我们下面以doc…

实验二 数据库的附加/分离、导入/导出与备份/还原

实验二 数据库的附加/分离、导入/导出与备份/还原 一、实验目的 1、理解备份的基本概念&#xff0c;掌握各种备份数据库的方法。 2、掌握如何从备份中还原数据库。 3、掌握数据库中各种数据的导入/导出。 4、掌握数据库的附加与分离&#xff0c;理解数据库的附加与分离的作用。…

RubyFPV开源代码之系统简介

RubyFPV开源代码之系统简介 1. 源由2. 工程架构3. 特性介绍&#xff08;软件&#xff09;3.1 特性亮点3.2 数字优势3.3 使用功能 4. DEMO推荐&#xff08;硬件&#xff09;4.1 天空端4.2 地面端4.3 按键硬件Raspberry PiRadxa 3W/E/C 5. 软件设计6. 参考资料 1. 源由 RubyFPV以…

php代码审计2 piwigo CMS in_array()函数漏洞

php代码审计2 piwigo CMS in_array()函数漏洞 一、目的 本次学习目的是了解in_array()函数和对项目piwigo中关于in_array()函数存在漏洞的一个审计并利用漏洞获得管理员帐号。 二、in_array函数学习 in_array() 函数搜索数组中是否存在指定的值。 in_array($search,$array…

PHP校园助手系统小程序

&#x1f511; 校园助手系统 —— 智慧校园生活 &#x1f4f1;一款基于ThinkPHPUniapp框架深度定制的校园助手系统&#xff0c;犹如一把智慧之钥&#xff0c;专为校园团队精心打造&#xff0c;解锁智慧校园生活的无限精彩。它独家适配微信小程序&#xff0c;无需繁琐的下载与安…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.2 ndarray解剖课:多维数组的底层实现

1.2 《ndarray解剖课&#xff1a;多维数组的底层实现》 内容介绍 NumPy 的 ndarray 是其核心数据结构&#xff0c;用于高效处理多维数组。在这篇文章中&#xff0c;我们将深入解析 ndarray 的底层实现&#xff0c;探讨其内存结构、维度、数据类型、步长等关键概念&#xff0c…

计算机网络 (61)移动IP

前言 移动IP&#xff08;Mobile IP&#xff09;是由Internet工程任务小组&#xff08;Internet Engineering Task Force&#xff0c;IETF&#xff09;提出的一个协议&#xff0c;旨在解决移动设备在不同网络间切换时的通信问题&#xff0c;确保移动设备可以在离开原有网络或子网…

css粘性定位超出指定宽度失效问题

展示效果 解决办法&#xff1a;外层容器添加display:grid即可 完整代码 <template><div class"box"><div class"line" v-for"items in 10"><div class"item" v-for"item in 8">drgg</div>&…

10 Hyperledger Fabric 介绍

简介 HypeLedger&#xff08;超级账本&#xff09;是由Linux基金会2015年创建的首个面向企业应用场景的开源分布式账本平台。 HypeLedger Fabric是HypeLedger种的区块链项目之一HypeLedger Fabric引入权限管理在架构设计上支持可插拔、可扩展是首个面向联盟链场景的开源项目 …

分布式光纤应变监测是一种高精度、分布式的监测技术

一、土木工程领域 桥梁结构健康监测 主跨应变监测&#xff1a;在大跨度桥梁的主跨部分&#xff0c;如悬索桥的主缆、斜拉桥的斜拉索和主梁&#xff0c;分布式光纤应变传感器可以沿着这些关键结构部件进行铺设。通过实时监测应变情况&#xff0c;能够精确捕捉到车辆荷载、风荷…

机器学习10-解读CNN代码Pytorch版

机器学习10-解读CNN代码Pytorch版 我个人是Java程序员&#xff0c;关于Python代码的使用过程中的相关代码事项&#xff0c;在此进行记录 文章目录 机器学习10-解读CNN代码Pytorch版1-核心逻辑脉络2-参考网址3-解读CNN代码Pytorch版本1-MNIST数据集读取2-CNN网络的定义1-无注释版…

【C++高并发服务器WebServer】-7:共享内存

本文目录 一、共享内存1.1 shmget函数1.2 shmat1.3 shmdt1.4 shmctl1.5 ftok1.6 共享内存和内存映射的关联1.7 小demo 二、共享内存操作命令 一、共享内存 共享内存允许两个或者多个进程共享物理内存的同一块区域&#xff08;通常被称为段&#xff09;。由于一个共享内存段会称…

稀土抗菌剂:提升产品质量,保障公共健康

随着全球对抗菌技术需求的不断增长&#xff0c;传统的抗菌剂逐渐暴露出其局限性&#xff0c;包括耐药性、环境污染及副作用等问题。在此背景下&#xff0c;稀土抗菌剂作为一种新兴的抗菌材料&#xff0c;凭借其卓越的抗菌性能、环保特性以及应用多样性&#xff0c;正在成为各行…

机器学习11-学习路径推荐

机器学习11-学习路径推荐 本文希望摒除AI学习商业宣传要素&#xff0c;推荐一条极简的AI学习路线&#xff01;推荐内容均为在线免费内容&#xff0c;如果有条件可以咨询专业的培训机构&#xff01; 文章目录 机器学习11-学习路径推荐[toc] 1-AI培训路线第一阶段 Python-人工智能…

《边界感知的分而治之方法:基于扩散模型的无监督阴影去除解决方案》学习笔记

paper&#xff1a;Boundary-Aware Divide and Conquer: A Diffusion-Based Solution for Unsupervised Shadow Removal 目录 摘要 1、介绍 2、相关工作 2.1 阴影去除 2.2 去噪扩散概率模型&#xff08;Denoising Diffusion Probabilistic Models, DDPM&#xff09; 3、方…