python3+TensorFlow 2.x(三)手写数字识别

news2025/1/27 8:41:37

目录

代码实现

模型解析:

1、加载 MNIST 数据集:

2、数据预处理:

3、构建神经网络模型:

4、编译模型:

5、训练模型:

6、评估模型:

7、预测和可视化结果:

输出结果:

总结:


代码实现

TensorFlow 2.x 实现手写数字识别(MNIST 数据集)。MNIST 数据集包含了 28x28 像素的手写数字图像,任务是将这些图像分类为 10 个类别(0-9) 

import tensorflow as tf
from tensorflow.keras import layers, models
import matplotlib.pyplot as plt

# 1. 加载 MNIST 数据集
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()

# 2. 数据预处理:归一化和改变形状
train_images = train_images / 255.0  # 将图像像素值归一化到 [0, 1]
test_images = test_images / 255.0

# 调整形状,使得每张图片的维度是 [28, 28, 1],因为模型需要3D输入
train_images = train_images.reshape((train_images.shape[0], 28, 28, 1))
test_images = test_images.reshape((test_images.shape[0], 28, 28, 1))

# 3. 构建神经网络模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')  # 10类分类问题
])

# 4. 编译模型:选择优化器、损失函数和评价指标
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',  # 因为标签是整数,所以使用 sparse_categorical_crossentropy
              metrics=['accuracy'])

# 5. 训练模型
history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels))

# 6. 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"Test accuracy: {test_acc}")

# 7. 可视化训练过程中的损失和准确率变化
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()

plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

# 8. 使用模型进行预测
predictions = model.predict(test_images)

# 显示一些预测结果
for i in range(5):
    plt.imshow(test_images[i].reshape(28, 28), cmap='gray')
    plt.title(f"Predicted Label: {predictions[i].argmax()}, Actual Label: {test_labels[i]}")
    plt.show()

模型解析:

1、加载 MNIST 数据集:

使用 tf.keras.datasets.mnist.load_data() 函数来加载 MNIST 数据集。返回的数据包括训练集和测试集。训练集有 60,000 张图像,测试集有 10,000 张图像。

2、数据预处理:

将图像的像素值从 [0, 255] 归一化到 [0, 1],使每个像素的值在 0 到 1 之间,提升模型的训练效果。将每张图像的形状调整为 (28, 28, 1),即每个图像是 28x28 的灰度图像。

3、构建神经网络模型:

使用卷积神经网络(CNN)构建模型:Conv2D 层用于提取图像的特征,使用了 ReLU 激活函数。MaxPooling2D 层用于下采样,减少计算量。Flatten 层将卷积层的输出展平,进入全连接层。Dense 层用于输出分类结果,其中最后一层使用了 softmax 激活函数,将模型的输出转换为 10 类的概率分布。

4、编译模型:

使用 adam 优化器,sparse_categorical_crossentropy 作为损失函数(适用于类别标签是整数的情况),并使用 accuracy 作为评价指标。

5、训练模型:

使用 model.fit 训练模型,设置了 5 个 epoch,使用训练集进行训练,并验证模型在测试集上的表现。

6、评估模型:

使用 model.evaluate 在测试集上评估模型的准确性。并可视化训练过程中的损失和准确率变化:使用 matplotlib 绘制训练过程中的损失和准确率变化曲线,查看模型的学习进度。

7、预测和可视化结果

使用训练好的模型对测试集进行预测,展示一些预测结果,并与真实标签进行对比。

输出结果

训练和验证准确率:随着训练的进行,准确率应该逐渐提高。
测试准确率:训练完成后,模型在测试集上的准确率会显示出来,通常可以达到 98% 以上。
预测图像:展示一些手写数字图像,标注预测的标签和实际标签。

预测可视化展示

总结:

该模型使用了卷积层、池化层以及全连接层,在 MNIST 数据集上训练,最终达到了很好的分类效果。你可以调整模型的超参数(例如卷积层的数量、神经元的数量等)以提高性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2283343.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基础项目——扫雷(c++)

目录 前言一、环境配置二、基础框架三、关闭事件四、资源加载五、初始地图六、常量定义七、地图随机八、点击排雷九、格子类化十、 地图类化十一、 接口优化十二、 文件拆分十三、游戏重开 前言 各位小伙伴们,这期我们一起学习出贪吃蛇以外另一个基础的项目——扫雷…

[操作系统] 深入进程地址空间

程序地址空间回顾 在C语言学习的时,对程序的函数、变量、代码等数据的存储有一个大致的轮廓。在语言层面上存储的地方叫做程序地址空间,不同类型的数据有着不同的存储地址。 下图为程序地址空间的存储分布和和特性: 使用以下代码来验证一下…

OpenCV:图像处理中的低通滤波

目录 简述 什么是低通滤波? 各种滤波器简介与实现 方盒滤波 均值滤波 中值滤波 高斯滤波 双边滤波 各种滤波的对比与应用场景 相关阅读 OpenCV基础:图像变换-CSDN博客 OpenCV:图像滤波、卷积与卷积核-CSDN博客 简述 低通滤波是一…

32、【OS】【Nuttx】OSTest分析(1):stdio测试(二)

背景 接上篇wiki 31、【OS】【Nuttx】OSTest分析(1):stdio测试(一) 继续stdio测试的分析,上篇讲到标准IO端口初始化,单从测试内容来说其实很简单,没啥可分析的,但这几篇…

OpenAI掀桌子!免费版ChatGPT,提供o3-mini模型!

逆天免费用 今天凌晨,OpenAI联合创始人兼首席执行官Sam Altman宣布了一个大消息——免费版ChatGPT,将提供o3-mini模型! 网页们纷纷不淡定了 看来OpenAI,这o3-mini还没正式上线呢,就免费开放使用了。 不过还是要感谢…

redis离线安装部署详解(包括一键启动)

像上文一样 因为在学习的过程中没有查到一个详细的离线部署方案 所以在自己学习之后想要自己写一个文章 希望可以帮助后续学习redis离线部署的朋友少走一线弯路 首先就是下载安装包 可以自己在本地下载再传到机器上(通过xftp或lrzsz都可) http://d…

图论汇总1

1.图论理论基础 图的基本概念 二维坐标中,两点可以连成线,多个点连成的线就构成了图。 当然图也可以就一个节点,甚至没有节点(空图) 图的种类 整体上一般分为 有向图 和 无向图。 有向图是指 图中边是有方向的&a…

小利特惠源码/生活缴费/电话费/油卡燃气/等充值业务类源码附带承兑系统

全新首发小利特惠/生活缴费/电话费/油卡燃气/等充值业务类源码附带U商承兑系统 安装教程如下 图片:

ESMC-600M蛋白质语言模型本地部署攻略

前言 之前介绍了ESMC-6B模型的网络接口调用方法,但申请token比较慢,有网友问能不能出一个本地部署ESMC小模型的攻略,遂有本文。 其实本地部署并不复杂,官方github上面也比较清楚了。 操作过程 环境配置:CUDA 12.1、…

Java 实现Excel转HTML、或HTML转Excel

Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,以便更好地利用和展示数据。本文将介绍如何通过 Java 实现 E…

Ubuntu20.04 运行 PL-VIO

文章目录 运行后不知为何没有线特征 运行后不知为何没有线特征

centos操作系统上以service形式运行blackbox_exporter监控网页端口

文章目录 前言一、blackbox_exporter是什么二、使用步骤1.获取二进制文件2.准备部署脚本3.执行命令,进行部署4.prometheus中增加需要监控页面的job信息 三、查看部署结果四、配置到grafana中总结 前言 记录一下centos操作系统上以简单的service形式运行blackbox_ex…

Linux内核编程(二十一)USB驱动开发-键盘驱动

一、驱动类型 USB 驱动开发主要分为两种:主机侧的驱动程序和设备侧的驱动程序。一般我们编写的都是主机侧的USB驱动程序。 主机侧驱动程序用于控制插入到主机中的 USB 设备,而设备侧驱动程序则负责控制 USB 设备如何与主机通信。由于设备侧驱动程序通常与…

RV1126画面质量四:GOP改善画质

一. 什么是 GOP GOP 实际上就是两个 I 帧的间隔,比方说分辨率是 1920 * 1080 50 帧,假设 GOP 为 5,那就是大概 2s 插入一个 I 帧。我们再 回顾下,H264/H265 的帧结构。H264/H265 分别分为三种帧类型:I 帧、…

【2025年数学建模美赛F题】(顶刊论文绘图)模型代码+论文

全球网络犯罪与网络安全政策的多维度分析及效能评估 摘要1 Introduction1.1 Problem Background1.2Restatement of the Problem1.3 Literature Review1.4 Our Work 2 Assumptions and Justifications数据完整性与可靠性假设:法律政策独立性假设:人口统计…

Vivado生成X1或X4位宽mcs文件并固化到flash

1.生成mcs文件 01.在vivado里的菜单栏选择"tools"工具栏 02.在"tools"里选择"生成内存配置文件" 03.配置参数 按照FPGA板上的flash型号进行选型,相关配置步骤可参考下图。 注意:Flash数据传输位宽如果需要选择X4位宽&am…

idea plugin插件开发——入门级教程(IntelliJ IDEA Plugin)

手打不易,如果转摘,请注明出处! 注明原文:idea plugin插件开发——入门级教程(IntelliJ IDEA Plugin)-CSDN博客 目录 前言 官方 官方文档 代码示例 开发前必读 Intellij、Gradle、JDK 版本关系 plu…

Linux的常用指令的用法

目录 Linux下基本指令 whoami ls指令: 文件: touch clear pwd cd mkdir rmdir指令 && rm 指令 man指令 cp mv cat more less head tail 管道和重定向 1. 重定向(Redirection) 2. 管道(Pipes&a…

docker 简要笔记

文章目录 一、前提内容1、docker 环境准备2、docker-compose 环境准备3、流程说明 二、打包 docker 镜像1、基础镜像2、国内镜像源3、基础的dockerfile4、打包镜像 四、构建运行1、docker 部分2、docker-compose 部分2.1、构建docker-compose.yml2.1.1、同目录构建2.1.2、利用镜…

Windows 与 Linux 文件权限的对比与转换

Windows和Linux在文件权限管理方面存在显著差异。了解它们的对比和转换方法对于跨平台操作和管理文件非常重要。以下是详细的对比和转换方法: 一、Windows 文件权限 1. 权限类型 Windows使用基于用户和组的权限模型,常见的权限类型包括: 读…