MAX30102 心率血氧模块简介
-
功能:用于检测心率和血氧饱和度,集成了红外和红光 LED 以及光电二极管。
-
接口:支持 I2C 通信,默认 I2C 地址为
0x57
。 -
应用:广泛用于健康监测设备中,如智能手环、手表等。
硬件连接
MAX30102 引脚 | 功能 | STM32 连接 |
---|---|---|
VCC | 电源输入 (+3.3V) | 3.3V |
GND | 地 | GND |
INT | 中断输出 | PB8 |
SDA | 数据线 | PB9 |
SCL | 时钟线 | PB7 |
软件部分
我们代码中使用的是软件I2C来和MAX30102通信。
Max30102.c
void MAX30102_Init(void)
{
MAX30102_INT_Init();
MAX30102_IIC_Init();
MAX30102_Reset();
max30102_Bus_Write(REG_INTR_ENABLE_1,0xc0); // INTR setting
max30102_Bus_Write(REG_INTR_ENABLE_2,0x00);
max30102_Bus_Write(REG_FIFO_WR_PTR,0x00); //FIFO_WR_PTR[4:0]
max30102_Bus_Write(REG_OVF_COUNTER,0x00); //OVF_COUNTER[4:0]
max30102_Bus_Write(REG_FIFO_RD_PTR,0x00); //FIFO_RD_PTR[4:0]
max30102_Bus_Write(REG_FIFO_CONFIG,0x0f); //sample avg = 1, fifo rollover=false, fifo almost full = 17
max30102_Bus_Write(REG_MODE_CONFIG,0x03); //0x02 for Red only, 0x03 for SpO2 mode 0x07 multimode LED
max30102_Bus_Write(REG_SPO2_CONFIG,0x27); // SPO2_ADC range = 4096nA, SPO2 sample rate (100 Hz), LED pulseWidth (400uS)
max30102_Bus_Write(REG_LED1_PA,0x24); //Choose value for ~ 7mA for LED1
max30102_Bus_Write(REG_LED2_PA,0x24); // Choose value for ~ 7mA for LED2
max30102_Bus_Write(REG_PILOT_PA,0x7f); // Choose value for ~ 25mA for Pilot LED
}
这里我们比较直观了,首先我们肯定是初始化I2C协议,我们用IO口模拟出I2C协议,然后封装好对应的写字节以及读字节函数,然后查看我们的Max30102说明文档,写入对应的参数值,从而实现初始化Max30102模块,我们直接查看源码,配合注释,其实以及非常清晰了。
源文件
#include "max30102.h"
#include "delay.h"
u8 max30102_Bus_Write(u8 Register_Address, u8 Word_Data)
{
/* 采用串行EEPROM随即读取指令序列,连续读取若干字节 */
/* 第1步:发起I2C总线启动信号 */
MAX30102_IIC_Start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_WR); /* 此处是写指令 */
/* 第3步:发送ACK */
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第4步:发送字节地址 */
MAX30102_IIC_Send_Byte(Register_Address);
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第5步:开始写入数据 */
MAX30102_IIC_Send_Byte(Word_Data);
/* 第6步:发送ACK */
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 发送I2C总线停止信号 */
MAX30102_IIC_Stop();
return 1; /* 执行成功 */
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
/* 发送I2C总线停止信号 */
MAX30102_IIC_Stop();
return 0;
}
u8 max30102_Bus_Read(u8 Register_Address)
{
u8 data;
/* 第1步:发起I2C总线启动信号 */
MAX30102_IIC_Start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_WR); /* 此处是写指令 */
/* 第3步:发送ACK */
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第4步:发送字节地址, */
MAX30102_IIC_Send_Byte((uint8_t)Register_Address);
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第6步:重新启动I2C总线。下面开始读取数据 */
MAX30102_IIC_Start();
/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_RD); /* 此处是读指令 */
/* 第8步:发送ACK */
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第9步:读取数据 */
{
data = MAX30102_IIC_Read_Byte(0); /* 读1个字节 */
MAX30102_IIC_NAck(); /* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
}
/* 发送I2C总线停止信号 */
MAX30102_IIC_Stop();
return data; /* 执行成功 返回data值 */
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
/* 发送I2C总线停止信号 */
MAX30102_IIC_Stop();
return 0;
}
void max30102_FIFO_ReadWords(u8 Register_Address,u16 Word_Data[][2],u8 count)
{
u8 i=0;
u8 no = count;
u8 data1, data2;
/* 第1步:发起I2C总线启动信号 */
MAX30102_IIC_Start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_WR); /* 此处是写指令 */
/* 第3步:发送ACK */
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第4步:发送字节地址, */
MAX30102_IIC_Send_Byte((uint8_t)Register_Address);
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第6步:重新启动I2C总线。下面开始读取数据 */
MAX30102_IIC_Start();
/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_RD); /* 此处是读指令 */
/* 第8步:发送ACK */
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第9步:读取数据 */
while (no)
{
data1 = MAX30102_IIC_Read_Byte(0);
MAX30102_IIC_Ack();
data2 = MAX30102_IIC_Read_Byte(0);
MAX30102_IIC_Ack();
Word_Data[i][0] = (((u16)data1 << 8) | data2); //
data1 = MAX30102_IIC_Read_Byte(0);
MAX30102_IIC_Ack();
data2 = MAX30102_IIC_Read_Byte(0);
if(1==no)
MAX30102_IIC_NAck(); /* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
else
MAX30102_IIC_Ack();
Word_Data[i][1] = (((u16)data1 << 8) | data2);
no--;
i++;
}
/* 发送I2C总线停止信号 */
MAX30102_IIC_Stop();
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
/* 发送I2C总线停止信号 */
MAX30102_IIC_Stop();
}
void max30102_FIFO_ReadBytes(u8 Register_Address,u8* Data)
{
max30102_Bus_Read(REG_INTR_STATUS_1);
max30102_Bus_Read(REG_INTR_STATUS_2);
/* 第1步:发起I2C总线启动信号 */
MAX30102_IIC_Start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_WR); /* 此处是写指令 */
/* 第3步:发送ACK */
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第4步:发送字节地址, */
MAX30102_IIC_Send_Byte((uint8_t)Register_Address);
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第6步:重新启动I2C总线。下面开始读取数据 */
MAX30102_IIC_Start();
/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
MAX30102_IIC_Send_Byte(max30102_WR_address | I2C_RD); /* 此处是读指令 */
/* 第8步:发送ACK */
if (MAX30102_IIC_Wait_Ack() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第9步:读取数据 */
Data[0] = MAX30102_IIC_Read_Byte(1);
Data[1] = MAX30102_IIC_Read_Byte(1);
Data[2] = MAX30102_IIC_Read_Byte(1);
Data[3] = MAX30102_IIC_Read_Byte(1);
Data[4] = MAX30102_IIC_Read_Byte(1);
Data[5] = MAX30102_IIC_Read_Byte(0);
/* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
/* 发送I2C总线停止信号 */
MAX30102_IIC_Stop();
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
/* 发送I2C总线停止信号 */
MAX30102_IIC_Stop();
}
void MAX30102_INT_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_AHB1PeriphClockCmd(MAX30102_INT_CLK,ENABLE);
GPIO_InitStructure.GPIO_Pin = MAX30102_INT_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(MAX30102_INT_PORT, &GPIO_InitStructure);
}
//初始化IIC
void MAX30102_IIC_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_AHB1PeriphClockCmd(MAX30102_IIC_CLK, ENABLE); /* 打开GPIO时钟 */
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_OD;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Pin = MAX30102_IIC_SCL_PIN;
GPIO_Init(MAX30102_IIC_PORT, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = MAX30102_IIC_SDA_PIN;
GPIO_Init(MAX30102_IIC_PORT, &GPIO_InitStructure);
/* 给一个停止信号, 复位I2C总线上的所有设备到待机模式 */
MAX30102_IIC_SDA=1;
MAX30102_IIC_SCL=1;
MAX30102_IIC_Stop();
}
void MAX30102_Init(void)
{
MAX30102_INT_Init();
MAX30102_IIC_Init();
MAX30102_Reset();
max30102_Bus_Write(REG_INTR_ENABLE_1,0xc0); // INTR setting
max30102_Bus_Write(REG_INTR_ENABLE_2,0x00);
max30102_Bus_Write(REG_FIFO_WR_PTR,0x00); //FIFO_WR_PTR[4:0]
max30102_Bus_Write(REG_OVF_COUNTER,0x00); //OVF_COUNTER[4:0]
max30102_Bus_Write(REG_FIFO_RD_PTR,0x00); //FIFO_RD_PTR[4:0]
max30102_Bus_Write(REG_FIFO_CONFIG,0x0f); //sample avg = 1, fifo rollover=false, fifo almost full = 17
max30102_Bus_Write(REG_MODE_CONFIG,0x03); //0x02 for Red only, 0x03 for SpO2 mode 0x07 multimode LED
max30102_Bus_Write(REG_SPO2_CONFIG,0x27); // SPO2_ADC range = 4096nA, SPO2 sample rate (100 Hz), LED pulseWidth (400uS)
max30102_Bus_Write(REG_LED1_PA,0x24); //Choose value for ~ 7mA for LED1
max30102_Bus_Write(REG_LED2_PA,0x24); // Choose value for ~ 7mA for LED2
max30102_Bus_Write(REG_PILOT_PA,0x7f); // Choose value for ~ 25mA for Pilot LED
}
void MAX30102_Reset(void)
{
max30102_Bus_Write(REG_MODE_CONFIG,0x40);
max30102_Bus_Write(REG_MODE_CONFIG,0x40);
}
void maxim_max30102_write_reg(uint8_t uch_addr, uint8_t uch_data)
{
// char ach_i2c_data[2];
// ach_i2c_data[0]=uch_addr;
// ach_i2c_data[1]=uch_data;
//
// MAX30102_IIC_WriteBytes(I2C_WRITE_ADDR, ach_i2c_data, 2);
MAX30102_IIC_Write_One_Byte(I2C_WRITE_ADDR,uch_addr,uch_data);
}
void maxim_max30102_read_reg(uint8_t uch_addr, uint8_t *puch_data)
{
// char ch_i2c_data;
// ch_i2c_data=uch_addr;
// MAX30102_IIC_WriteBytes(I2C_WRITE_ADDR, &ch_i2c_data, 1);
//
// i2c.read(I2C_READ_ADDR, &ch_i2c_data, 1);
//
// *puch_data=(uint8_t) ch_i2c_data;
MAX30102_IIC_Read_One_Byte(I2C_WRITE_ADDR,uch_addr,puch_data);
}
void maxim_max30102_read_fifo(uint32_t *pun_red_led, uint32_t *pun_ir_led)
{
uint32_t un_temp;
unsigned char uch_temp;
char ach_i2c_data[6];
*pun_red_led=0;
*pun_ir_led=0;
//read and clear status register
maxim_max30102_read_reg(REG_INTR_STATUS_1, &uch_temp);
maxim_max30102_read_reg(REG_INTR_STATUS_2, &uch_temp);
MAX30102_IIC_ReadBytes(I2C_WRITE_ADDR,REG_FIFO_DATA,(u8 *)ach_i2c_data,6);
un_temp=(unsigned char) ach_i2c_data[0];
un_temp<<=16;
*pun_red_led+=un_temp;
un_temp=(unsigned char) ach_i2c_data[1];
un_temp<<=8;
*pun_red_led+=un_temp;
un_temp=(unsigned char) ach_i2c_data[2];
*pun_red_led+=un_temp;
un_temp=(unsigned char) ach_i2c_data[3];
un_temp<<=16;
*pun_ir_led+=un_temp;
un_temp=(unsigned char) ach_i2c_data[4];
un_temp<<=8;
*pun_ir_led+=un_temp;
un_temp=(unsigned char) ach_i2c_data[5];
*pun_ir_led+=un_temp;
*pun_red_led&=0x03FFFF; //Mask MSB [23:18]
*pun_ir_led&=0x03FFFF; //Mask MSB [23:18]
}
//MAX30102引脚输出模式控制
void MAX30102_IIC_SDA_OUT(void)//SDA输出方向配置
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin=MAX30102_IIC_SDA_PIN;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT;//SDA推挽输出
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(MAX30102_IIC_PORT,&GPIO_InitStructure);
}
void MAX30102_IIC_SDA_IN(void)//SDA输入方向配置
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin=MAX30102_IIC_SDA_PIN;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(MAX30102_IIC_PORT,&GPIO_InitStructure);
}
//产生IIC起始信号
void MAX30102_IIC_Start(void)
{
MAX30102_IIC_SDA_OUT(); //sda线输出
MAX30102_IIC_SDA=1;
MAX30102_IIC_SCL=1;
delay_us(4);
MAX30102_IIC_SDA=0;//START:when CLK is high,DATA change form high to low
delay_us(4);
MAX30102_IIC_SCL=0;//钳住I2C总线,准备发送或接收数据
}
//产生IIC停止信号
void MAX30102_IIC_Stop(void)
{
MAX30102_IIC_SDA_OUT();//sda线输出
MAX30102_IIC_SCL=0;
MAX30102_IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
delay_us(4);
MAX30102_IIC_SCL=1;
MAX30102_IIC_SDA=1;//发送I2C总线结束信号
delay_us(4);
}
//等待应答信号到来
//返回值:1,接收应答失败
// 0,接收应答成功
u8 MAX30102_IIC_Wait_Ack(void)
{
u8 ucErrTime=0;
MAX30102_IIC_SDA_IN(); //SDA设置为输入
MAX30102_IIC_SDA=1;delay_us(1);
MAX30102_IIC_SCL=1;delay_us(1);
while(MAX30102_READ_SDA)
{
ucErrTime++;
if(ucErrTime>250)
{
MAX30102_IIC_Stop();
return 1;
}
}
MAX30102_IIC_SCL=0;//时钟输出0
return 0;
}
//产生ACK应答
void MAX30102_IIC_Ack(void)
{
MAX30102_IIC_SCL=0;
MAX30102_IIC_SDA_OUT();
MAX30102_IIC_SDA=0;
delay_us(2);
MAX30102_IIC_SCL=1;
delay_us(2);
MAX30102_IIC_SCL=0;
}
//不产生ACK应答
void MAX30102_IIC_NAck(void)
{
MAX30102_IIC_SCL=0;
MAX30102_IIC_SDA_OUT();
MAX30102_IIC_SDA=1;
delay_us(2);
MAX30102_IIC_SCL=1;
delay_us(2);
MAX30102_IIC_SCL=0;
}
//IIC发送一个字节
//返回从机有无应答
//1,有应答
//0,无应答
void MAX30102_IIC_Send_Byte(u8 txd)
{
u8 t;
MAX30102_IIC_SDA_OUT();
MAX30102_IIC_SCL=0;//拉低时钟开始数据传输
for(t=0;t<8;t++)
{
MAX30102_IIC_SDA=(txd&0x80)>>7;
txd<<=1;
delay_us(2); //对TEA5767这三个延时都是必须的
MAX30102_IIC_SCL=1;
delay_us(2);
MAX30102_IIC_SCL=0;
delay_us(2);
}
}
//读1个字节,ack=1时,发送ACK,ack=0,发送nACK
u8 MAX30102_IIC_Read_Byte(unsigned char ack)
{
unsigned char i,receive=0;
MAX30102_IIC_SDA_IN();//SDA设置为输入
for(i=0;i<8;i++ )
{
MAX30102_IIC_SCL=0;
delay_us(2);
MAX30102_IIC_SCL=1;
receive<<=1;
if(MAX30102_READ_SDA)receive++;
delay_us(1);
}
if (!ack)
MAX30102_IIC_NAck();//发送nACK
else
MAX30102_IIC_Ack(); //发送ACK
return receive;
}
void MAX30102_IIC_WriteBytes(u8 WriteAddr,u8* data,u8 dataLength)
{
u8 i;
MAX30102_IIC_Start();
MAX30102_IIC_Send_Byte(WriteAddr); //发送写命令
MAX30102_IIC_Wait_Ack();
for(i=0;i<dataLength;i++)
{
MAX30102_IIC_Send_Byte(data[i]);
MAX30102_IIC_Wait_Ack();
}
MAX30102_IIC_Stop();//产生一个停止条件
delay_ms(10);
}
void MAX30102_IIC_ReadBytes(u8 deviceAddr, u8 writeAddr,u8* data,u8 dataLength)
{
u8 i;
MAX30102_IIC_Start();
MAX30102_IIC_Send_Byte(deviceAddr); //发送写命令
MAX30102_IIC_Wait_Ack();
MAX30102_IIC_Send_Byte(writeAddr);
MAX30102_IIC_Wait_Ack();
MAX30102_IIC_Send_Byte(deviceAddr|0X01);//进入接收模式
MAX30102_IIC_Wait_Ack();
for(i=0;i<dataLength-1;i++)
{
data[i] = MAX30102_IIC_Read_Byte(1);
}
data[dataLength-1] = MAX30102_IIC_Read_Byte(0);
MAX30102_IIC_Stop();//产生一个停止条件
delay_ms(10);
}
void MAX30102_IIC_Read_One_Byte(u8 daddr,u8 addr,u8* data)
{
MAX30102_IIC_Start();
MAX30102_IIC_Send_Byte(daddr); //发送写命令
MAX30102_IIC_Wait_Ack();
MAX30102_IIC_Send_Byte(addr);//发送地址
MAX30102_IIC_Wait_Ack();
MAX30102_IIC_Start();
MAX30102_IIC_Send_Byte(daddr|0X01);//进入接收模式
MAX30102_IIC_Wait_Ack();
*data = MAX30102_IIC_Read_Byte(0);
MAX30102_IIC_Stop();//产生一个停止条件
}
void MAX30102_IIC_Write_One_Byte(u8 daddr,u8 addr,u8 data)
{
MAX30102_IIC_Start();
MAX30102_IIC_Send_Byte(daddr); //发送写命令
MAX30102_IIC_Wait_Ack();
MAX30102_IIC_Send_Byte(addr);//发送地址
MAX30102_IIC_Wait_Ack();
MAX30102_IIC_Send_Byte(data); //发送字节
MAX30102_IIC_Wait_Ack();
MAX30102_IIC_Stop();//产生一个停止条件
delay_ms(10);
}
const uint16_t auw_hamm[31]={ 41, 276, 512, 276, 41 }; //Hamm= long16(512* hamming(5)');
//uch_spo2_table is computed as -45.060*ratioAverage* ratioAverage + 30.354 *ratioAverage + 94.845 ;
const uint8_t uch_spo2_table[184]={ 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99,
99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97,
97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91,
90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81,
80, 80, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 69, 69, 68, 67,
66, 66, 65, 64, 63, 62, 62, 61, 60, 59, 58, 57, 56, 56, 55, 54, 53, 52, 51, 50,
49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29,
28, 27, 26, 25, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 6, 5,
3, 2, 1 } ;
static int32_t an_dx[ BUFFER_SIZE-MA4_SIZE]; // delta
static int32_t an_x[ BUFFER_SIZE]; //ir
static int32_t an_y[ BUFFER_SIZE]; //red
void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer, int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid,
int32_t *pn_heart_rate, int8_t *pch_hr_valid)
/**
* \brief Calculate the heart rate and SpO2 level
* \par Details
* By detecting peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed.
* Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow.
* Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio.
*
* \param[in] *pun_ir_buffer - IR sensor data buffer
* \param[in] n_ir_buffer_length - IR sensor data buffer length
* \param[in] *pun_red_buffer - Red sensor data buffer
* \param[out] *pn_spo2 - Calculated SpO2 value
* \param[out] *pch_spo2_valid - 1 if the calculated SpO2 value is valid
* \param[out] *pn_heart_rate - Calculated heart rate value
* \param[out] *pch_hr_valid - 1 if the calculated heart rate value is valid
*
* \retval None
*/
{
uint32_t un_ir_mean ,un_only_once ;
int32_t k ,n_i_ratio_count;
int32_t i, s, m, n_exact_ir_valley_locs_count ,n_middle_idx;
int32_t n_th1, n_npks,n_c_min;
int32_t an_ir_valley_locs[15] ;
int32_t an_exact_ir_valley_locs[15] ;
int32_t an_dx_peak_locs[15] ;
int32_t n_peak_interval_sum;
int32_t n_y_ac, n_x_ac;
int32_t n_spo2_calc;
int32_t n_y_dc_max, n_x_dc_max;
int32_t n_y_dc_max_idx, n_x_dc_max_idx;
int32_t an_ratio[5],n_ratio_average;
int32_t n_nume, n_denom ;
// remove DC of ir signal
un_ir_mean =0;
for (k=0 ; k<n_ir_buffer_length ; k++ ) un_ir_mean += pun_ir_buffer[k] ;
un_ir_mean =un_ir_mean/n_ir_buffer_length ;
for (k=0 ; k<n_ir_buffer_length ; k++ ) an_x[k] = pun_ir_buffer[k] - un_ir_mean ;
// 4 pt Moving Average
for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
n_denom= ( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3]);
an_x[k]= n_denom/(int32_t)4;
}
// get difference of smoothed IR signal
for( k=0; k<BUFFER_SIZE-MA4_SIZE-1; k++)
an_dx[k]= (an_x[k+1]- an_x[k]);
// 2-pt Moving Average to an_dx
for(k=0; k< BUFFER_SIZE-MA4_SIZE-2; k++){
an_dx[k] = ( an_dx[k]+an_dx[k+1])/2 ;
}
// hamming window
// flip wave form so that we can detect valley with peak detector
for ( i=0 ; i<BUFFER_SIZE-HAMMING_SIZE-MA4_SIZE-2 ;i++){
s= 0;
for( k=i; k<i+ HAMMING_SIZE ;k++){
s -= an_dx[k] *auw_hamm[k-i] ;
}
an_dx[i]= s/ (int32_t)1146; // divide by sum of auw_hamm
}
n_th1=0; // threshold calculation
for ( k=0 ; k<BUFFER_SIZE-HAMMING_SIZE ;k++){
n_th1 += ((an_dx[k]>0)? an_dx[k] : ((int32_t)0-an_dx[k])) ;
}
n_th1= n_th1/ ( BUFFER_SIZE-HAMMING_SIZE);
// peak location is acutally index for sharpest location of raw signal since we flipped the signal
maxim_find_peaks( an_dx_peak_locs, &n_npks, an_dx, BUFFER_SIZE-HAMMING_SIZE, n_th1, 8, 5 );//peak_height, peak_distance, max_num_peaks
n_peak_interval_sum =0;
if (n_npks>=2){
for (k=1; k<n_npks; k++)
n_peak_interval_sum += (an_dx_peak_locs[k]-an_dx_peak_locs[k -1]);
n_peak_interval_sum=n_peak_interval_sum/(n_npks-1);
*pn_heart_rate=(int32_t)(6000/n_peak_interval_sum);// beats per minutes
*pch_hr_valid = 1;
}
else {
*pn_heart_rate = -999;
*pch_hr_valid = 0;
}
for ( k=0 ; k<n_npks ;k++)
an_ir_valley_locs[k]=an_dx_peak_locs[k]+HAMMING_SIZE/2;
// raw value : RED(=y) and IR(=X)
// we need to assess DC and AC value of ir and red PPG.
for (k=0 ; k<n_ir_buffer_length ; k++ ) {
an_x[k] = pun_ir_buffer[k] ;
an_y[k] = pun_red_buffer[k] ;
}
// find precise min near an_ir_valley_locs
n_exact_ir_valley_locs_count =0;
for(k=0 ; k<n_npks ;k++){
un_only_once =1;
m=an_ir_valley_locs[k];
n_c_min= 16777216;//2^24;
if (m+5 < BUFFER_SIZE-HAMMING_SIZE && m-5 >0){
for(i= m-5;i<m+5; i++)
if (an_x[i]<n_c_min){
if (un_only_once >0){
un_only_once =0;
}
n_c_min= an_x[i] ;
an_exact_ir_valley_locs[k]=i;
}
if (un_only_once ==0)
n_exact_ir_valley_locs_count ++ ;
}
}
if (n_exact_ir_valley_locs_count <2 ){
*pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range
*pch_spo2_valid = 0;
return;
}
// 4 pt MA
for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
an_x[k]=( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3])/(int32_t)4;
an_y[k]=( an_y[k]+an_y[k+1]+ an_y[k+2]+ an_y[k+3])/(int32_t)4;
}
//using an_exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio
//finding AC/DC maximum of raw ir * red between two valley locations
n_ratio_average =0;
n_i_ratio_count =0;
for(k=0; k< 5; k++) an_ratio[k]=0;
for (k=0; k< n_exact_ir_valley_locs_count; k++){
if (an_exact_ir_valley_locs[k] > BUFFER_SIZE ){
*pn_spo2 = -999 ; // do not use SPO2 since valley loc is out of range
*pch_spo2_valid = 0;
return;
}
}
// find max between two valley locations
// and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2
for (k=0; k< n_exact_ir_valley_locs_count-1; k++){
n_y_dc_max= -16777216 ;
n_x_dc_max= - 16777216;
if (an_exact_ir_valley_locs[k+1]-an_exact_ir_valley_locs[k] >10){
for (i=an_exact_ir_valley_locs[k]; i< an_exact_ir_valley_locs[k+1]; i++){
if (an_x[i]> n_x_dc_max) {n_x_dc_max =an_x[i];n_x_dc_max_idx =i; }
if (an_y[i]> n_y_dc_max) {n_y_dc_max =an_y[i];n_y_dc_max_idx=i;}
}
n_y_ac= (an_y[an_exact_ir_valley_locs[k+1]] - an_y[an_exact_ir_valley_locs[k] ] )*(n_y_dc_max_idx -an_exact_ir_valley_locs[k]); //red
n_y_ac= an_y[an_exact_ir_valley_locs[k]] + n_y_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]) ;
n_y_ac= an_y[n_y_dc_max_idx] - n_y_ac; // subracting linear DC compoenents from raw
n_x_ac= (an_x[an_exact_ir_valley_locs[k+1]] - an_x[an_exact_ir_valley_locs[k] ] )*(n_x_dc_max_idx -an_exact_ir_valley_locs[k]); // ir
n_x_ac= an_x[an_exact_ir_valley_locs[k]] + n_x_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]);
n_x_ac= an_x[n_y_dc_max_idx] - n_x_ac; // subracting linear DC compoenents from raw
n_nume=( n_y_ac *n_x_dc_max)>>7 ; //prepare X100 to preserve floating value
n_denom= ( n_x_ac *n_y_dc_max)>>7;
if (n_denom>0 && n_i_ratio_count <5 && n_nume != 0)
{
an_ratio[n_i_ratio_count]= (n_nume*20)/n_denom ; //formular is ( n_y_ac *n_x_dc_max) / ( n_x_ac *n_y_dc_max) ; ///*************************n_nume原来是*100************************//
n_i_ratio_count++;
}
}
}
maxim_sort_ascend(an_ratio, n_i_ratio_count);
n_middle_idx= n_i_ratio_count/2;
if (n_middle_idx >1)
n_ratio_average =( an_ratio[n_middle_idx-1] +an_ratio[n_middle_idx])/2; // use median
else
n_ratio_average = an_ratio[n_middle_idx ];
if( n_ratio_average>2 && n_ratio_average <184){
n_spo2_calc= uch_spo2_table[n_ratio_average] ;
*pn_spo2 = n_spo2_calc ;
*pch_spo2_valid = 1;// float_SPO2 = -45.060*n_ratio_average* n_ratio_average/10000 + 30.354 *n_ratio_average/100 + 94.845 ; // for comparison with table
}
else{
*pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range
*pch_spo2_valid = 0;
}
}
void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num)
/**
* \brief Find peaks
* \par Details
* Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE
*
* \retval None
*/
{
maxim_peaks_above_min_height( pn_locs, pn_npks, pn_x, n_size, n_min_height );
maxim_remove_close_peaks( pn_locs, pn_npks, pn_x, n_min_distance );
*pn_npks = min( *pn_npks, n_max_num );
}
void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height)
/**
* \brief Find peaks above n_min_height
* \par Details
* Find all peaks above MIN_HEIGHT
*
* \retval None
*/
{
int32_t i = 1, n_width;
*pn_npks = 0;
while (i < n_size-1){
if (pn_x[i] > n_min_height && pn_x[i] > pn_x[i-1]){ // find left edge of potential peaks
n_width = 1;
while (i+n_width < n_size && pn_x[i] == pn_x[i+n_width]) // find flat peaks
n_width++;
if (pn_x[i] > pn_x[i+n_width] && (*pn_npks) < 15 ){ // find right edge of peaks
pn_locs[(*pn_npks)++] = i;
// for flat peaks, peak location is left edge
i += n_width+1;
}
else
i += n_width;
}
else
i++;
}
}
void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance)
/**
* \brief Remove peaks
* \par Details
* Remove peaks separated by less than MIN_DISTANCE
*
* \retval None
*/
{
int32_t i, j, n_old_npks, n_dist;
/* Order peaks from large to small */
maxim_sort_indices_descend( pn_x, pn_locs, *pn_npks );
for ( i = -1; i < *pn_npks; i++ ){
n_old_npks = *pn_npks;
*pn_npks = i+1;
for ( j = i+1; j < n_old_npks; j++ ){
n_dist = pn_locs[j] - ( i == -1 ? -1 : pn_locs[i] ); // lag-zero peak of autocorr is at index -1
if ( n_dist > n_min_distance || n_dist < -n_min_distance )
pn_locs[(*pn_npks)++] = pn_locs[j];
}
}
// Resort indices longo ascending order
maxim_sort_ascend( pn_locs, *pn_npks );
}
void maxim_sort_ascend(int32_t *pn_x,int32_t n_size)
/**
* \brief Sort array
* \par Details
* Sort array in ascending order (insertion sort algorithm)
*
* \retval None
*/
{
int32_t i, j, n_temp;
for (i = 1; i < n_size; i++) {
n_temp = pn_x[i];
for (j = i; j > 0 && n_temp < pn_x[j-1]; j--)
pn_x[j] = pn_x[j-1];
pn_x[j] = n_temp;
}
}
void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size)
/**
* \brief Sort indices
* \par Details
* Sort indices according to descending order (insertion sort algorithm)
*
* \retval None
*/
{
int32_t i, j, n_temp;
for (i = 1; i < n_size; i++) {
n_temp = pn_indx[i];
for (j = i; j > 0 && pn_x[n_temp] > pn_x[pn_indx[j-1]]; j--)
pn_indx[j] = pn_indx[j-1];
pn_indx[j] = n_temp;
}
}
头文件
#ifndef __MAX30102_H
#define __MAX30102_H
#include "main.h"
#include "stdbool.h"
// 位带操作宏定义
#define BITBAND(addr, bitnum) ((0x42000000 + ((addr - 0x40000000) * 32) + (bitnum * 4)))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
// IO口地址映射
#define GPIOA_ODR_Addr (GPIOA_BASE+0x14) // 0x40020014
#define GPIOB_ODR_Addr (GPIOB_BASE+0x14) // 0x40020414
#define GPIOC_ODR_Addr (GPIOC_BASE+0x14) // 0x40020814
#define GPIOD_ODR_Addr (GPIOD_BASE+0x14) // 0x40020C14
#define GPIOE_ODR_Addr (GPIOE_BASE+0x14) // 0x40021014
#define GPIOF_ODR_Addr (GPIOF_BASE+0x14) // 0x40021414
#define GPIOG_ODR_Addr (GPIOG_BASE+0x14) // 0x40021814
#define GPIOH_ODR_Addr (GPIOH_BASE+0x14) // 0x40021C14
#define GPIOI_ODR_Addr (GPIOI_BASE+0x14) // 0x40022014
#define GPIOA_IDR_Addr (GPIOA_BASE+0x10) // 0x40020010
#define GPIOB_IDR_Addr (GPIOB_BASE+0x10) // 0x40020410
#define GPIOC_IDR_Addr (GPIOC_BASE+0x10) // 0x40020810
#define GPIOD_IDR_Addr (GPIOD_BASE+0x10) // 0x40020C10
#define GPIOE_IDR_Addr (GPIOE_BASE+0x10) // 0x40021010
#define GPIOF_IDR_Addr (GPIOF_BASE+0x10) // 0x40021410
#define GPIOG_IDR_Addr (GPIOG_BASE+0x10) // 0x40021810
#define GPIOH_IDR_Addr (GPIOH_BASE+0x10) // 0x40021C10
#define GPIOI_IDR_Addr (GPIOI_BASE+0x10) // 0x40022010
//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出
#define PAin(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入
#define PBout(n) BIT_ADDR(GPIOB_ODR_Addr,n) //输出
#define PBin(n) BIT_ADDR(GPIOB_IDR_Addr,n) //输入
#define PCout(n) BIT_ADDR(GPIOC_ODR_Addr,n) //输出
#define PCin(n) BIT_ADDR(GPIOC_IDR_Addr,n) //输入
#define PDout(n) BIT_ADDR(GPIOD_ODR_Addr,n) //输出
#define PDin(n) BIT_ADDR(GPIOD_IDR_Addr,n) //输入
#define PEout(n) BIT_ADDR(GPIOE_ODR_Addr,n) //输出
#define PEin(n) BIT_ADDR(GPIOE_IDR_Addr,n) //输入
#define PFout(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出
#define PFin(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入
#define PGout(n) BIT_ADDR(GPIOG_ODR_Addr,n) //输出
#define PGin(n) BIT_ADDR(GPIOG_IDR_Addr,n) //输入
//==============================================MAX30102硬件接口==================================================
#define MAX30102_IIC_CLK RCC_AHB1Periph_GPIOB
#define MAX30102_IIC_PORT GPIOB
#define MAX30102_IIC_SCL_PIN GPIO_Pin_6
#define MAX30102_IIC_SDA_PIN GPIO_Pin_7
#define MAX30102_IIC_SCL PBout(6)
#define MAX30102_IIC_SDA PBout(7)
#define MAX30102_READ_SDA PBin(7) //输入SDA
#define MAX30102_INT_CLK RCC_AHB1Periph_GPIOB
#define MAX30102_INT_PORT GPIOB
#define MAX30102_INT_PIN GPIO_Pin_8
#define MAX30102_INT PBin(8)
//#define MAX30102_INT GPIO_ReadInputDataBit(MAX30102_INT_PORT, MAX30102_INT_PIN)
//=============================================================================================================
#define I2C_WR 0 /* 写控制bit */
#define I2C_RD 1 /* 读控制bit */
#define I2C_WRITE_ADDR 0xAE
#define I2C_READ_ADDR 0xAF
#define true 1
#define false 0
#define FS 100
#define BUFFER_SIZE (FS* 5)
#define HR_FIFO_SIZE 7
#define MA4_SIZE 4 // DO NOT CHANGE
#define HAMMING_SIZE 5// DO NOT CHANGE
#define min(x,y) ((x) < (y) ? (x) : (y))
#define max30102_WR_address 0xAE
#define I2C_WRITE_ADDR 0xAE
#define I2C_READ_ADDR 0xAF
//register addresses
#define REG_INTR_STATUS_1 0x00
#define REG_INTR_STATUS_2 0x01
#define REG_INTR_ENABLE_1 0x02
#define REG_INTR_ENABLE_2 0x03
#define REG_FIFO_WR_PTR 0x04
#define REG_OVF_COUNTER 0x05
#define REG_FIFO_RD_PTR 0x06
#define REG_FIFO_DATA 0x07
#define REG_FIFO_CONFIG 0x08
#define REG_MODE_CONFIG 0x09
#define REG_SPO2_CONFIG 0x0A
#define REG_LED1_PA 0x0C
#define REG_LED2_PA 0x0D
#define REG_PILOT_PA 0x10
#define REG_MULTI_LED_CTRL1 0x11
#define REG_MULTI_LED_CTRL2 0x12
#define REG_TEMP_INTR 0x1F
#define REG_TEMP_FRAC 0x20
#define REG_TEMP_CONFIG 0x21
#define REG_PROX_INT_THRESH 0x30
#define REG_REV_ID 0xFE
#define REG_PART_ID 0xFF
//IIC所有操作函数
void MAX30102_IIC_Init(void); //初始化IIC的IO口
void MAX30102_IIC_Start(void); //发送IIC开始信号
void MAX30102_IIC_Stop(void); //发送IIC停止信号
void MAX30102_IIC_Send_Byte(u8 txd); //IIC发送一个字节
u8 MAX30102_IIC_Read_Byte(unsigned char ack);//IIC读取一个字节
u8 MAX30102_IIC_Wait_Ack(void); //IIC等待ACK信号
void MAX30102_IIC_Ack(void); //IIC发送ACK信号
void MAX30102_IIC_NAck(void); //IIC不发送ACK信号
void MAX30102_IIC_Write_One_Byte(u8 daddr,u8 addr,u8 data);
void MAX30102_IIC_Read_One_Byte(u8 daddr,u8 addr,u8* data);
void MAX30102_IIC_WriteBytes(u8 WriteAddr,u8* data,u8 dataLength);
void MAX30102_IIC_ReadBytes(u8 deviceAddr, u8 writeAddr,u8* data,u8 dataLength);
//MAX30102所有操作函数
void MAX30102_Init(void);
void MAX30102_Reset(void);
u8 M30102_Bus_Write(u8 Register_Address, u8 Word_Data);
u8 max30102_Bus_Read(u8 Register_Address);
void max30102_FIFO_ReadWords(u8 Register_Address,u16 Word_Data[][2],u8 count);
void max30102_FIFO_ReadBytes(u8 Register_Address,u8* Data);
void maxim_max30102_write_reg(uint8_t uch_addr, uint8_t uch_data);
void maxim_max30102_read_reg(uint8_t uch_addr, uint8_t *puch_data);
void maxim_max30102_read_fifo(uint32_t *pun_red_led, uint32_t *pun_ir_led);
//心率血氧算法所有函数
void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer , int32_t n_ir_buffer_length, uint32_t *pun_red_buffer , int32_t *pn_spo2, int8_t *pch_spo2_valid , int32_t *pn_heart_rate , int8_t *pch_hr_valid);
void maxim_find_peaks( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num );
void maxim_peaks_above_min_height( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height );
void maxim_remove_close_peaks( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance );
void maxim_sort_ascend( int32_t *pn_x, int32_t n_size );
void maxim_sort_indices_descend( int32_t *pn_x, int32_t *pn_indx, int32_t n_size);
#endif
这两个是Max30102的c文件以及头文件,非常之多,封装的非常好,我也是从别人现成的项目下移植过来的,我们只需要在头文件中根据我们的接线,修改对应的宏,就可以直接使用了,宏在头文件如下所示:
修改完这个宏之后,我们就成功移植好了心率血氧模块进入我们的项目了,这里的移植工作还未完成,我们max30102有两个源文件,我们可以在工程上面看到:
user_heart.c
我们还有一个user_heart.c ,其实是以max30102.c上面为基础,进行一些软件算法的优化, 以得到更加准确的心率血氧值。我们可以看一下函数调用关系:
然后我们可以大概看一下算法思路:
#include "user_heart.h"
#define MAX_BRIGHTNESS 255
#define INTERRUPT_REG 0X00
uint32_t aun_ir_buffer[500]; //IR LED 红外光数据,用于计算血氧
int32_t n_ir_buffer_length; //数据长度
uint32_t aun_red_buffer[500]; //Red LED 红光数据,用于计算心率曲线以及计算心率
int32_t n_sp02; //SPO2值
int8_t ch_spo2_valid; //用于显示SP02计算是否有效的指示符
int32_t n_heart_rate; //心率值
int8_t ch_hr_valid; //用于显示心率计算是否有效的指示符
uint8_t Temp;
uint32_t un_min, un_max, un_prev_data;
int i;
int32_t n_brightness;
float f_temp;
//u8 temp_num=0;
u8 temp[6];
u8 str[100];
u8 dis_hr=0,dis_spo2=0;
extern uint8_t max_int_flag;
void MAX30102_Data_Init(void)
{
un_min=0x3FFFF;
un_max=0;
//显示“心率:”
//Gui_DrawFont_GBK16(0,0,BLUE,GRAY0, "Heart:");
//Gui_DrawFont_GBK16(0,40,BLUE,GRAY0, "Blood:");
n_ir_buffer_length=500; //缓冲区长度为100,可存储以100sps运行的5秒样本
//读取前500个样本,并确定信号范围
for(i=0;i<n_ir_buffer_length;i++)
{
//while(MAX30102_INT==1); //等待,直到中断引脚断言
max30102_FIFO_ReadBytes(REG_FIFO_DATA,temp);
aun_red_buffer[i] = (long)((long)((long)temp[0]&0x03)<<16) | (long)temp[1]<<8 | (long)temp[2]; // 将值合并得到实际数字
aun_ir_buffer[i] = (long)((long)((long)temp[3] & 0x03)<<16) |(long)temp[4]<<8 | (long)temp[5]; // 将值合并得到实际数字
if(un_min>aun_red_buffer[i])
un_min=aun_red_buffer[i]; //更新计算最小值
if(un_max<aun_red_buffer[i])
un_max=aun_red_buffer[i]; //更新计算最大值
}
un_prev_data=aun_red_buffer[i];
//计算前500个样本(前5秒的样本)后的心率和血氧饱和度
maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid);
}
void Get_MAX30102_Data(u8 *hr, u8 *spo2)
{
//舍去前100组样本,并将后400组样本移到顶部,将100~500缓存数据移位到0~400
for(i=100;i<500;i++)
{
aun_red_buffer[i-100]=aun_red_buffer[i]; //将100-500缓存数据移位到0-400
aun_ir_buffer[i-100]=aun_ir_buffer[i]; //将100-500缓存数据移位到0-400
//update the signal min and max
if(un_min>aun_red_buffer[i]) //寻找移位后0-400中的最小值
un_min=aun_red_buffer[i];
if(un_max<aun_red_buffer[i]) //寻找移位后0-400中的最大值
un_max=aun_red_buffer[i];
}
//在计算心率前取100组样本,取的数据放在400-500缓存数组中
for(i=400;i<500;i++)
{
un_prev_data=aun_red_buffer[i-1]; //在计算心率前取100组样本,取的数据放在400-500缓存数组中
//while(MAX30102_INT==1);
max30102_FIFO_ReadBytes(REG_FIFO_DATA,temp); //读取传感器数据,赋值到temp中
aun_red_buffer[i] = (long)((long)((long)temp[0]&0x03)<<16) | (long)temp[1]<<8 | (long)temp[2]; //将值合并得到实际数字,数组400-500为新读取数据
aun_ir_buffer[i] = (long)((long)((long)temp[3] & 0x03)<<16) |(long)temp[4]<<8 | (long)temp[5]; //将值合并得到实际数字,数组400-500为新读取数据
if(aun_red_buffer[i]>un_prev_data) //用新获取的一个数值与上一个数值对比
{
f_temp=aun_red_buffer[i]-un_prev_data;
f_temp/=(un_max-un_min);
f_temp*=MAX_BRIGHTNESS; //公式(心率曲线)=(新数值-旧数值)/(最大值-最小值)*255
n_brightness-=(int)f_temp;
if(n_brightness<0)
n_brightness=0;
}
else
{
f_temp=un_prev_data-aun_red_buffer[i];
f_temp/=(un_max-un_min);
f_temp*=MAX_BRIGHTNESS; //公式(心率曲线)=(旧数值-新数值)/(最大值-最小值)*255
n_brightness+=(int)f_temp;
if(n_brightness>MAX_BRIGHTNESS)
n_brightness=MAX_BRIGHTNESS;
}
//通过UART将样本和计算结果发送到终端程序
if(ch_hr_valid == 1 && n_heart_rate<120)//**/ ch_hr_valid == 1 && ch_spo2_valid ==1 && n_heart_rate<120 && n_sp02<101
{
dis_hr = n_heart_rate;
dis_spo2 = n_sp02;
}
else
{
dis_hr = 0;
dis_spo2 = 0;
}
}
maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid);
*hr = dis_hr;
*spo2 = dis_spo2;
// char buf[64];
// sprintf(buf, "Heart: %d", dis_hr);
// Gui_DrawFont_GBK16(0, 20, BLUE,GRAY0, buf);
// sprintf(buf, "Blood: %d", dis_spo2);
// Gui_DrawFont_GBK16(0, 50, BLUE,GRAY0, buf);
// memset(buf, 0, sizeof(buf));
//LCD_Show_Info(0,40, &lv_font_montserrat_14, lv_color_hex(0xffffff), "Heart: %d BMP", dis_hr);
//LCD_Show_Info(0,80, &lv_font_montserrat_14, lv_color_hex(0xffffff), "Blood: %d %", dis_spo2);
//LCD_Show_Info(0,40, &lv_font_montserrat_14, lv_color_hex(0xffffff), "Heart: %d BMP", *hr);
//LCD_Show_Info(0,80, &lv_font_montserrat_14, lv_color_hex(0xffffff), "Blood: %d %", *spo2);
//delay_ms(1000);
}
void Get_MAX30102(void)
{
char buf[40];
un_min=0x3FFFF;
un_max=0;
//显示“心率:”
//Gui_DrawFont_GBK16(0,0,BLUE,GRAY0, "Heart:");
//Gui_DrawFont_GBK16(0,40,BLUE,GRAY0, "Blood:");
n_ir_buffer_length=500; //缓冲区长度为100,可存储以100sps运行的5秒样本
//读取前500个样本,并确定信号范围
for(i=0;i<n_ir_buffer_length;i++)
{
//while(MAX30102_INT==1); //等待,直到中断引脚断言
max30102_FIFO_ReadBytes(REG_FIFO_DATA,temp);
aun_red_buffer[i] = (long)((long)((long)temp[0]&0x03)<<16) | (long)temp[1]<<8 | (long)temp[2]; // 将值合并得到实际数字
aun_ir_buffer[i] = (long)((long)((long)temp[3] & 0x03)<<16) |(long)temp[4]<<8 | (long)temp[5]; // 将值合并得到实际数字
if(un_min>aun_red_buffer[i])
un_min=aun_red_buffer[i]; //更新计算最小值
if(un_max<aun_red_buffer[i])
un_max=aun_red_buffer[i]; //更新计算最大值
}
un_prev_data=aun_red_buffer[i];
//计算前500个样本(前5秒的样本)后的心率和血氧饱和度
maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid);
while(1)
{
//舍去前100组样本,并将后400组样本移到顶部,将100~500缓存数据移位到0~400
for(i=100;i<500;i++)
{
aun_red_buffer[i-100]=aun_red_buffer[i]; //将100-500缓存数据移位到0-400
aun_ir_buffer[i-100]=aun_ir_buffer[i]; //将100-500缓存数据移位到0-400
//update the signal min and max
if(un_min>aun_red_buffer[i]) //寻找移位后0-400中的最小值
un_min=aun_red_buffer[i];
if(un_max<aun_red_buffer[i]) //寻找移位后0-400中的最大值
un_max=aun_red_buffer[i];
}
//在计算心率前取100组样本,取的数据放在400-500缓存数组中
for(i=400;i<500;i++)
{
un_prev_data=aun_red_buffer[i-1]; //在计算心率前取100组样本,取的数据放在400-500缓存数组中
//while(MAX30102_INT==1);
max30102_FIFO_ReadBytes(REG_FIFO_DATA,temp); //读取传感器数据,赋值到temp中
aun_red_buffer[i] = (long)((long)((long)temp[0]&0x03)<<16) | (long)temp[1]<<8 | (long)temp[2]; //将值合并得到实际数字,数组400-500为新读取数据
aun_ir_buffer[i] = (long)((long)((long)temp[3] & 0x03)<<16) |(long)temp[4]<<8 | (long)temp[5]; //将值合并得到实际数字,数组400-500为新读取数据
if(aun_red_buffer[i]>un_prev_data) //用新获取的一个数值与上一个数值对比
{
f_temp=aun_red_buffer[i]-un_prev_data;
f_temp/=(un_max-un_min);
f_temp*=MAX_BRIGHTNESS; //公式(心率曲线)=(新数值-旧数值)/(最大值-最小值)*255
n_brightness-=(int)f_temp;
if(n_brightness<0)
n_brightness=0;
}
else
{
f_temp=un_prev_data-aun_red_buffer[i];
f_temp/=(un_max-un_min);
f_temp*=MAX_BRIGHTNESS; //公式(心率曲线)=(旧数值-新数值)/(最大值-最小值)*255
n_brightness+=(int)f_temp;
if(n_brightness>MAX_BRIGHTNESS)
n_brightness=MAX_BRIGHTNESS;
}
//通过UART将样本和计算结果发送到终端程序
if(ch_hr_valid == 1 && n_heart_rate<120)//**/ ch_hr_valid == 1 && ch_spo2_valid ==1 && n_heart_rate<120 && n_sp02<101
{
dis_hr = n_heart_rate;
dis_spo2 = n_sp02;
}
else
{
dis_hr = 0;
dis_spo2 = 0;
}
}
maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid);
// LCD_Show_Info(0,40, &lv_font_montserrat_14, lv_color_hex(0xffffff), "Heart: %d BMP", dis_hr);
// LCD_Show_Info(0,80, &lv_font_montserrat_14, lv_color_hex(0xffffff), "Blood: %d %", dis_spo2);
sprintf(buf, "Heart: %d", dis_hr);
Gui_DrawFont_GBK16(0, 20, BLUE,GRAY0, buf);
sprintf(buf, "Blood: %d", dis_spo2);
Gui_DrawFont_GBK16(0, 50, BLUE,GRAY0, buf);
memset(buf, 0, sizeof(buf));
delay_ms(1000);
}
}
我们拿 void Get_MAX30102_Data(u8 *hr, u8 *spo2);来举例。
void Get_MAX30102_Data(u8 *hr, u8 *spo2)
{
//舍去前100组样本,并将后400组样本移到顶部,将100~500缓存数据移位到0~400
for(i=100;i<500;i++)
{
aun_red_buffer[i-100]=aun_red_buffer[i]; //将100-500缓存数据移位到0-400
aun_ir_buffer[i-100]=aun_ir_buffer[i]; //将100-500缓存数据移位到0-400
//update the signal min and max
if(un_min>aun_red_buffer[i]) //寻找移位后0-400中的最小值
un_min=aun_red_buffer[i];
if(un_max<aun_red_buffer[i]) //寻找移位后0-400中的最大值
un_max=aun_red_buffer[i];
}
//在计算心率前取100组样本,取的数据放在400-500缓存数组中
for(i=400;i<500;i++)
{
un_prev_data=aun_red_buffer[i-1]; //在计算心率前取100组样本,取的数据放在400-500缓存数组中
//while(MAX30102_INT==1);
max30102_FIFO_ReadBytes(REG_FIFO_DATA,temp); //读取传感器数据,赋值到temp中
aun_red_buffer[i] = (long)((long)((long)temp[0]&0x03)<<16) | (long)temp[1]<<8 | (long)temp[2]; //将值合并得到实际数字,数组400-500为新读取数据
aun_ir_buffer[i] = (long)((long)((long)temp[3] & 0x03)<<16) |(long)temp[4]<<8 | (long)temp[5]; //将值合并得到实际数字,数组400-500为新读取数据
if(aun_red_buffer[i]>un_prev_data) //用新获取的一个数值与上一个数值对比
{
f_temp=aun_red_buffer[i]-un_prev_data;
f_temp/=(un_max-un_min);
f_temp*=MAX_BRIGHTNESS; //公式(心率曲线)=(新数值-旧数值)/(最大值-最小值)*255
n_brightness-=(int)f_temp;
if(n_brightness<0)
n_brightness=0;
}
else
{
f_temp=un_prev_data-aun_red_buffer[i];
f_temp/=(un_max-un_min);
f_temp*=MAX_BRIGHTNESS; //公式(心率曲线)=(旧数值-新数值)/(最大值-最小值)*255
n_brightness+=(int)f_temp;
if(n_brightness>MAX_BRIGHTNESS)
n_brightness=MAX_BRIGHTNESS;
}
//通过UART将样本和计算结果发送到终端程序
if(ch_hr_valid == 1 && n_heart_rate<120)//**/ ch_hr_valid == 1 && ch_spo2_valid ==1 && n_heart_rate<120 && n_sp02<101
{
dis_hr = n_heart_rate;
dis_spo2 = n_sp02;
}
else
{
dis_hr = 0;
dis_spo2 = 0;
}
}
maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid);*hr = dis_hr;
*spo2 = dis_spo2;
// char buf[64];
// sprintf(buf, "Heart: %d", dis_hr);
// Gui_DrawFont_GBK16(0, 20, BLUE,GRAY0, buf);
// sprintf(buf, "Blood: %d", dis_spo2);
// Gui_DrawFont_GBK16(0, 50, BLUE,GRAY0, buf);
// memset(buf, 0, sizeof(buf));//LCD_Show_Info(0,40, &lv_font_montserrat_14, lv_color_hex(0xffffff), "Heart: %d BMP", dis_hr);
//LCD_Show_Info(0,80, &lv_font_montserrat_14, lv_color_hex(0xffffff), "Blood: %d %", dis_spo2);
//LCD_Show_Info(0,40, &lv_font_montserrat_14, lv_color_hex(0xffffff), "Heart: %d BMP", *hr);
//LCD_Show_Info(0,80, &lv_font_montserrat_14, lv_color_hex(0xffffff), "Blood: %d %", *spo2);
//delay_ms(1000);
}
这段代码中,涉及到的主要算法包括心率和血氧饱和度(SpO2)的计算,具体包括以下几个部分:
1. 心率(HR)和血氧饱和度(SpO2)计算
通过MAX30102模块收集的红光和红外光数据,通过以下步骤来计算心率和血氧饱和度:
数据采集与处理:
aun_red_buffer存储红光LED的信号数据,aun_ir_buffer存储红外光LED的信号数据。
在Get_MAX30102_Data函数中,前100个样本被丢弃,剩下的400个样本移位到缓冲区的前面进行处理。这是一个滑动窗口机制,用于获取最近的传感器数据。
每次读取传感器数据时,都会更新信号的最小值(un_min)和最大值(un_max),这些值用于后续的数据标准化处理。
心率曲线计算:
对采集到的红光数据进行处理,通过计算新数据和上一个数据的差异(f_temp),来得到一个亮度变化值(n_brightness)。
根据这个亮度变化值来推算心率曲线。公式为:
f_temp = (new_data - old_data) / (un_max - un_min) * MAX_BRIGHTNESS;
这个公式通过标准化数据(将信号的变化值映射到0到255的亮度范围)来计算心率曲线的振幅变化。
血氧饱和度计算(SpO2):
代码在maxim_heart_rate_and_oxygen_saturation函数中使用了基于红光和红外信号的算法来计算血氧饱和度(SpO2)。该算法依赖于红光和红外光的不同吸收特性,通过计算它们之间的比率来推算SpO2值。
2. 公式分析
在每次新的数据采集之后,通过比较当前数据与前一个数据的变化,计算出f_temp(心率曲线的变化量),然后根据公式对信号进行标准化处理,并转换成亮度值(n_brightness)。该亮度值用于反映心率曲线的变化。
这些数据处理的核心是:
最小值和最大值的动态更新,用于标准化处理(通过un_min和un_max)。
心率曲线计算,通过计算每个数据点与前一个数据点的差值,标准化后得到亮度变化值。
有效性判断,ch_hr_valid和ch_spo2_valid标志位用于确认计算结果是否有效。
3. 算法作用
心率计算: 通过处理红光信号的波动来计算心率。心率的计算依赖于血液的脉动变化,而这些变化反映在红光信号的吸收上。
血氧饱和度计算: 通过比较红光和红外光信号的相对变化,计算血氧的饱和度。红光和红外光的吸收程度会随着血氧浓度的变化而变化,算法利用这些变化来计算血氧浓度。
心率计算算法: 基于红光信号的变化量来计算心率。该算法通过亮度变化推算出心率值。
血氧计算算法: 基于红光和红外光的吸收差异计算血氧饱和度(SpO2)。
通过Max30102获取心率血氧值
我们在获取传感器任务里面进行获取,我们先不用关注FreeRTOS,我们先去关注一下如何获取传感器数值。
MAX30102_Data_Init();
Get_MAX30102_Data(&sens_data.Hr_Data, &sens_data.Spo2_Data);
两个都是我们之前就封装好的函数,我们只需要在需要获取心率值的时候调用即可。