《keras 3 内卷神经网络》

news2025/1/24 12:18:04

keras 3 内卷神经网络

作者:Aritra Roy Gosthipaty
创建日期:2021/07/25
最后修改时间:2021/07/25
描述:深入研究特定于位置和通道无关的“内卷”内核。

(i) 此示例使用 Keras 3

 在 Colab 中查看 

 GitHub 源


介绍

卷积一直是大多数现代神经的基础 计算机视觉网络。卷积核是 空间不可知且特定于通道。因此,它无法 适应不同的视觉模式,包括 不同的空间位置。除了与位置相关的问题外, 卷积的感受野对捕获提出了挑战 远程空间交互。

为了解决上述问题,Li 等人。重新考虑属性 卷积 in Involution: Inverting the Interence of Convolution for VisualRecognition. 作者提出了“内卷核”,即特定于位置的 通道不可知。由于操作的特定位置性质, 作者说,自我注意属于 退化。

此示例描述了 involution 内核,比较了两个图像 分类模型,一个具有卷积,另一个具有 内卷,并试图与自我关注相提并论。


设置

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import tensorflow as tf
import keras
import matplotlib.pyplot as plt

# Set seed for reproducibility.
tf.random.set_seed(42)

卷积

卷积仍然是计算机视觉深度神经网络的支柱。 要理解 Involution,有必要谈谈 卷积操作。

考虑一个维度为 HW 和 C_in 的输入张量 X。我们采用 C_out 个卷积内核的集合,每个 形状 KK C_in。使用 multiply-add 运算 输入张量和我们获得输出张量 Y 的内核 尺寸 HW C_out

在上图中。这使得形状为 H 的输出张量 W 和 3.可以注意到,卷积核并不依赖于 输入张量的空间位置,使其与位置无关。另一方面,output 中的每个通道 Tensor 基于特定的卷积滤波器,这使得 IS 特定于通道C_out=3


退化

这个想法是有一个既特定于位置与通道无关的操作。尝试实现这些特定属性姿势 一个挑战。具有固定数量的内卷 kernel(对于每个 空间位置),我们将无法处理可变分辨率 input 张量。

为了解决这个问题,作者考虑生成每个 核以特定空间位置为条件。通过这种方法,我们 应该能够轻松处理可变分辨率的输入张量。 下图提供了有关此内核生成的直观 方法。

class Involution(keras.layers.Layer):
    def __init__(
        self, channel, group_number, kernel_size, stride, reduction_ratio, name
    ):
        super().__init__(name=name)

        # Initialize the parameters.
        self.channel = channel
        self.group_number = group_number
        self.kernel_size = kernel_size
        self.stride = stride
        self.reduction_ratio = reduction_ratio

    def build(self, input_shape):
        # Get the shape of the input.
        (_, height, width, num_channels) = input_shape

        # Scale the height and width with respect to the strides.
        height = height // self.stride
        width = width // self.stride

        # Define a layer that average pools the input tensor
        # if stride is more than 1.
        self.stride_layer = (
            keras.layers.AveragePooling2D(
                pool_size=self.stride, strides=self.stride, padding="same"
            )
            if self.stride > 1
            else tf.identity
        )
        # Define the kernel generation layer.
        self.kernel_gen = keras.Sequential(
            [
                keras.layers.Conv2D(
                    filters=self.channel // self.reduction_ratio, kernel_size=1
                ),
                keras.layers.BatchNormalization(),
                keras.layers.ReLU(),
                keras.layers.Conv2D(
                    filters=self.kernel_size * self.kernel_size * self.group_number,
                    kernel_size=1,
                ),
            ]
        )
        # Define reshape layers
        self.kernel_reshape = keras.layers.Reshape(
            target_shape=(
                height,
                width,
                self.kernel_size * self.kernel_size,
                1,
                self.group_number,
            )
        )
        self.input_patches_reshape = keras.layers.Reshape(
            target_shape=(
                height,
                width,
                self.kernel_size * self.kernel_size,
                num_channels // self.group_number,
                self.group_number,
            )
        )
        self.output_reshape = keras.layers.Reshape(
            target_shape=(height, width, num_channels)
        )

    def call(self, x):
        # Generate the kernel with respect to the input tensor.
        # B, H, W, K*K*G
        kernel_input = self.stride_layer(x)
        kernel = self.kernel_gen(kernel_input)

        # reshape the kerenl
        # B, H, W, K*K, 1, G
        kernel = self.kernel_reshape(kernel)

        # Extract input patches.
        # B, H, W, K*K*C
        input_patches = tf.image.extract_patches(
            images=x,
            sizes=[1, self.kernel_size, self.kernel_size, 1],
            strides=[1, self.stride, self.stride, 1],
            rates=[1, 1, 1, 1],
            padding="SAME",
        )

        # Reshape the input patches to align with later operations.
        # B, H, W, K*K, C//G, G
        input_patches = self.input_patches_reshape(input_patches)

        # Compute the multiply-add operation of kernels and patches.
        # B, H, W, K*K, C//G, G
        output = tf.multiply(kernel, input_patches)
        # B, H, W, C//G, G
        output = tf.reduce_sum(output, axis=3)

        # Reshape the output kernel.
        # B, H, W, C
        output = self.output_reshape(output)

        # Return the output tensor and the kernel.
        return output, kernel

测试 Involution 层

# Define the input tensor.
input_tensor = tf.random.normal((32, 256, 256, 3))

# Compute involution with stride 1.
output_tensor, _ = Involution(
    channel=3, group_number=1, kernel_size=5, stride=1, reduction_ratio=1, name="inv_1"
)(input_tensor)
print(f"with stride 1 ouput shape: {
       
       output_tensor.shape}")

# Compute involution with stride 2.
output_tensor, _ = Involution(
    channel=3, group_number=1, kernel_size=5, stride=2, reduction_ratio=1, name="inv_2"
)(input_tensor)
print(f"with stride 2 ouput shape: {
       
       output_tensor.shape}")

# Compute involution with stride 1, channel 16 and reduction ratio 2.
output_tensor, _ = Involution(
    channel=16, group_number=1, kernel_size=5, stride=1, reduction_ratio=2, name="inv_3"
)(input_tensor)
print(
    "with channel 16 and reduction ratio 2 ouput shape: {}".format(output_tensor.shape)
)
with stride 1 ouput shape: (32, 256, 256, 3) with stride 2 ouput shape: (32, 128, 128, 3) with channel 16 and reduction ratio 2 ouput shape: (32, 256, 256, 3) 

图像分类

在本节中,我们将构建一个图像分类器模型。会有 是两个模型,一个带有卷积,另一个带有内卷。

图像分类模型深受 Google 的卷积神经网络 (CNN) 教程的启发。


获取 CIFAR10 数据集

# Load the CIFAR10 dataset.
print("loading the CIFAR10 dataset...")
(
    (train_images, train_labels),
    (
        test_images,
        test_labels,
    ),
) = keras.datasets.cifar10.load_data()

# Normalize pixel values to be between 0 and 1.
(train_images, test_images) = (train_images / 255.0, test_images / 255.0)

# Shuffle and batch the dataset.
train_ds = (
    tf.data.Dataset.from_tensor_slices((train_images, train_labels))
    .shuffle(256)
    .batch(256)
)
test_ds = tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(256)
loading the CIFAR10 dataset... 

可视化数据

class_names = [
    "airplane",
    "automobile",
    "bird",
    "cat",
    "deer",
    "dog",
    "frog",
    "horse",
    "ship",
    "truck",
]

plt.figure(figsize=(10, 10))
for i in range(25):
    plt.subplot(5, 5, i + 1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i])
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

PNG 格式


卷积神经网络

# Build the conv model.
print("building the convolution model...")
conv_model = keras.Sequential(
    [
        keras.layers.Conv2D(32, (3, 3), input_shape=(32, 32, 3), padding="same"),
        keras.layers.ReLU(name="relu1"),
        keras.layers.MaxPooling2D((2, 2)),
        keras.layers.Conv2D(64, (3, 3), padding="same"),
        keras.layers.ReLU(name="relu2"),
        keras.layers.MaxPooling2D((2, 2)),
        keras.layers.Conv2D(64, (3, 3), padding="same"),
        keras.layers.ReLU(name="relu3"),
        keras.layers.Flatten(),
        keras.layers.Dense(64, activation="relu"),
        keras.layers.Dense(10),
    ]
)

# Compile the mode with the necessary loss function and optimizer.
print("compiling the convolution model...")
conv_model.compile(
    optimizer="adam",
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=["accuracy"],
)

# Train the model.
print("conv model training...")
conv_hist = conv_model.fit(train_ds, epochs=20, validation_data=test_ds)
building the convolution model... compiling the convolution model... conv model training... Epoch 1/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 6s 15ms/step - accuracy: 0.3068 - loss: 1.9000 - val_accuracy: 0.4861 - val_loss: 1.4593 Epoch 2/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.5153 - loss: 1.3603 - val_accuracy: 0.5741 - val_loss: 1.1913 Epoch 3/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.5949 - loss: 1.1517 - val_accuracy: 0.6095 - val_loss: 1.0965 Epoch 4/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.6414 - loss: 1.0330 - val_accuracy: 0.6260 - val_loss: 1.0635 Epoch 5/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.6690 - loss: 0.9485 - val_accuracy: 0.6622 - val_loss: 0.9833 Epoch 6/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.6951 - loss: 0.8764 - val_accuracy: 0.6783 - val_loss: 0.9413 Epoch 7/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7122 - loss: 0.8167 - val_accuracy: 0.6856 - val_loss: 0.9134 Epoch 8/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7299 - loss: 0.7709 - val_accuracy: 0.7001 - val_loss: 0.8792 Epoch 9/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7467 - loss: 0.7288 - val_accuracy: 0.6992 - val_loss: 0.8821 Epoch 10/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7591 - loss: 0.6982 - val_accuracy: 0.7235 - val_loss: 0.8237 Epoch 11/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7725 - loss: 0.6550 - val_accuracy: 0.7115 - val_loss: 0.8521 Epoch 12/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7808 - loss: 0.6302 - val_accuracy: 0.7051 - val_loss: 0.8823 Epoch 13/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7860 - loss: 0.6101 - val_accuracy: 0.7122 - val_loss: 0.8635 Epoch 14/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7998 - loss: 0.5786 - val_accuracy: 0.7214 - val_loss: 0.8348 Epoch 15/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8117 - loss: 0.5473 - val_accuracy: 0.7139 - val_loss: 0.8835 Epoch 16/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8168 - loss: 0.5267 - val_accuracy: 0.7155 - val_loss: 0.8840 Epoch 17/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8266 - loss: 0.5022 - val_accuracy: 0.7239 - val_loss: 0.8576 Epoch 18/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8374 - loss: 0.4750 - val_accuracy: 0.7262 - val_loss: 0.8756 Epoch 19/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8452 - loss: 0.4505 - val_accuracy: 0.7235 - val_loss: 0.9049 Epoch 20/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.8531 - loss: 0.4283 - val_accuracy: 0.7304 - val_loss: 0.8962 

内卷神经网络

# Build the involution model.
print("building the involution model...")

inputs = keras.Input(shape=(32, 32, 3))
x, _ = Involution(
    channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_1"
)(inputs)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(
    channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_2"
)(x)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(
    channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_3"
)(x)
x = keras.layers.ReLU()(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(64, activation="relu")(x)
outputs = keras.layers.Dense(10)(x)

inv_model = keras.Model(inputs=[inputs], outputs=[outputs], name="inv_model")

# Compile the mode with the necessary loss function and optimizer.
print("compiling the involution model...")
inv_model.compile(
    optimizer="adam",
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=["accuracy"],
)

# train the model
print("inv model training...")
inv_hist = inv_model.fit(train_ds, epochs=20, validation_data=test_ds)
building the involution model... compiling the involution model... inv model training... Epoch 1/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 9s 25ms/step - accuracy: 0.1369 - loss: 2.2728 - val_accuracy: 0.2716 - val_loss: 2.1041 Epoch 2/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.2922 - loss: 1.9489 - val_accuracy: 0.3478 - val_loss: 1.8275 Epoch 3/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.3477 - loss: 1.8098 - val_accuracy: 0.3782 - val_loss: 1.7435 Epoch 4/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.3741 - loss: 1.7420 - val_accuracy: 0.3901 - val_loss: 1.6943 Epoch 5/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.3931 - loss: 1.6942 - val_accuracy: 0.4007 - val_loss: 1.6639 Epoch 6/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4057 - loss: 1.6622 - val_accuracy: 0.4108 - val_loss: 1.6494 Epoch 7/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4134 - loss: 1.6374 - val_accuracy: 0.4202 - val_loss: 1.6363 Epoch 8/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4200 - loss: 1.6166 - val_accuracy: 0.4312 - val_loss: 1.6062 Epoch 9/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4286 - loss: 1.5949 - val_accuracy: 0.4316 - val_loss: 1.6018 Epoch 10/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4346 - loss: 1.5794 - val_accuracy: 0.4346 - val_loss: 1.5963 Epoch 11/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4395 - loss: 1.5641 - val_accuracy: 0.4388 - val_loss: 1.5831 Epoch 12/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4445 - loss: 1.5502 - val_accuracy: 0.4443 - val_loss: 1.5826 Epoch 13/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4493 - loss: 1.5391 - val_accuracy: 0.4497 - val_loss: 1.5574 Epoch 14/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4528 - loss: 1.5255 - val_accuracy: 0.4547 - val_loss: 1.5433 Epoch 15/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.4575 - loss: 1.5148 - val_accuracy: 0.4548 - val_loss: 1.5438 Epoch 16/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4599 - loss: 1.5072 - val_accuracy: 0.4581 - val_loss: 1.5323 Epoch 17/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4664 - loss: 1.4957 - val_accuracy: 0.4598 - val_loss: 1.5321 Epoch 18/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4701 - loss: 1.4863 - val_accuracy: 0.4575 - val_loss: 1.5302 Epoch 19/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4737 - loss: 1.4790 - val_accuracy: 0.4676 - val_loss: 1.5233 Epoch 20/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4771 - loss: 1.4740 - val_accuracy: 0.4719 - val_loss: 1.5096 

比较

在本节中,我们将查看这两个模型并比较 几个指针。

参数

可以看到,在类似的架构中,CNN 中的 parameters 比 INN(内卷神经网络)大得多。

conv_model.summary()

inv_model.summary()
Model: "sequential_3"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv2d_6 (Conv2D)               │ (None, 32, 32, 32)        │        896 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ relu1 (ReLU)                    │ (None, 32, 32, 32)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d (MaxPooling2D)    │ (None, 16, 16, 32)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_7 (Conv2D)               │ (None, 16, 16, 64)        │     18,496 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ relu2 (ReLU)                    │ (None, 16, 16, 64)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_1 (MaxPooling2D)  │ (None, 8, 8, 64)          │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_8 (Conv2D)               │ (None, 8, 8, 64)          │     36,928 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ relu3 (ReLU)                    │ (None, 8, 8, 64)          │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten (Flatten)               │ (None, 4096)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense (Dense)                   │ (None, 64)                │    262,208 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_1 (Dense)                 │ (None, 10)                │        650 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 957,536 (3.65 MB)
 Trainable params: 319,178 (1.22 MB)
 Non-trainable params: 0 (0.00 B)
 Optimizer params: 638,358 (2.44 MB)
Model: "inv_model"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ input_layer_4 (InputLayer)      │ (None, 32, 32, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ inv_1 (Involution)              │ [(None, 32, 32, 3),       │         26 │
│                                 │ (None, 32, 32, 9, 1, 1)]  │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ re_lu_4 (ReLU)                  │ (None, 32, 32, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_2 (MaxPooling2D)  │ (None, 16, 16, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ inv_2 (Involution)              │ [(None, 16, 16, 3),       │         26 │
│                                 │ (None, 16, 16, 9, 1, 1)]  │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ re_lu_6 (ReLU)                  │ (None, 16, 16, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_3 (MaxPooling2D)  │ (None, 8, 8, 3)           │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ inv_3 (Involution)              │ [(None, 8, 8, 3), (None,  │         26 │
│                                 │ 8, 8, 9, 1, 1)]           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ re_lu_8 (ReLU)                  │ (None, 8, 8, 3)           │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten_1 (Flatten)             │ (None, 192)               │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_2 (Dense)                 │ (None, 64)                │     12,352 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_3 (Dense)                 │ (None, 10)                │        650 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 39,230 (153.25 KB)
 Trainable params: 13,074 (51.07 KB)
 Non-trainable params: 6 (24.00 B)
 Optimizer params: 26,150 (102.15 KB)

损失和准确率图

在这里,损失图和准确率图表明 INN 很慢 学习者(参数较低)。

plt.figure(figsize=(20, 5))

plt.subplot(1, 2, 1)
plt.title("Convolution Loss")
plt.plot(conv_hist.history["loss"], label="loss")
plt.plot(conv_hist.history["val_loss"], label="val_loss")
plt.legend()

plt.subplot(1, 2, 2)
plt.title("Involution Loss")
plt.plot(inv_hist.history["loss"], label="loss")
plt.plot(inv_hist.history["val_loss"], label="val_loss")
plt.legend()

plt.show()

plt.figure(figsize=(20, 5))

plt.subplot(1, 2, 1)
plt.title("Convolution Accuracy")
plt.plot(conv_hist.history["accuracy"], label="accuracy")
plt.plot(conv_hist.history["val_accuracy"], label="val_accuracy")
plt.legend()

plt.subplot(1, 2, 2)
plt.title("Involution Accuracy")
plt.plot(inv_hist.history["accuracy"], label="accuracy")
plt.plot(inv_hist.history["val_accuracy"], label="val_accuracy")
plt.legend()

plt.show()

PNG 格式

PNG 格式


可视化 Involution Kernel

为了可视化内核,我们从每个内核中获取 K×K 值的总和 involution 内核。不同空间的所有代表 locations 框架相应的热图。

作者提到:

“我们提议的内卷让人想起自我注意和 基本上可以成为它的广义版本。

通过内核的可视化,我们确实可以获得 图像的映射。学习的内卷核关注 输入张量的单个空间位置。特定于位置的特性使 involution 成为模型的通用空间 自我关注属于其中。

layer_names = ["inv_1", "inv_2", "inv_3"]
outputs = [inv_model.get_layer(name).output[1] for name in layer_names]
vis_model = keras.Model(inv_model.input, outputs)

fig, axes = plt.subplots(nrows=10, ncols=4, figsize=(10, 30))

for ax, test_image in zip(axes, test_images[:10]):
    (inv1_kernel, inv2_kernel, inv3_kernel) = vis_model.predict(test_image[None, ...])
    inv1_kernel = tf.reduce_sum(inv1_kernel, axis=[-1, -2, -3])
    inv2_kernel = tf.reduce_sum(inv2_kernel, axis=[-1, -2, -3])
    inv3_kernel = tf.reduce_sum(inv3_kernel, axis=[-1, -2, -3])

    ax[0].imshow(keras.utils.array_to_img(test_image))
    ax[0].set_title("Input Image")

    ax[1].imshow(keras.utils.array_to_img(inv1_kernel[0, ..., None]))
    ax[1].set_title("Involution Kernel 1")

    ax[2].imshow(keras.utils.array_to_img(inv2_kernel[0, ..., None]))
    ax[2].set_title("Involution Kernel 2")

    ax[3].imshow(keras.utils.array_to_img(inv3_kernel[0, ..., None]))
    ax[3].set_title("Involution Kernel 3")
 1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 503ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 10ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 

PNG 格式


结论

在此示例中,主要重点是构建一个层,该层 可以很容易地重复使用。虽然我们的比较是基于特定的 任务,请随意使用该图层来完成不同的任务并报告您的 结果。Involution

在我看来,内卷的关键要点是它的 与自我注意的关系。特定位置背后的直觉 通道特异性处理在许多任务中都有意义。

展望未来,您可以:

  • 观看 Yannick 的视频 内卷,以便更好地理解。
  • 试验内卷层的各种超参数。
  • 使用内卷层构建不同的模型。
  • 尝试完全构建不同的内核生成方法。

您可以使用 Hugging Face Hub 上托管的训练模型,并尝试 Hugging Face Spaces 上的演示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2281419.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux 进程环境变量:深入理解与实践指南

🌟 快来参与讨论💬,点赞👍、收藏⭐、分享📤,共创活力社区。🌟 🚩用通俗易懂且不失专业性的文字,讲解计算机领域那些看似枯燥的知识点🚩 在 Linux 系统里…

【博客之星】2024年度总结

👨‍🎓博主简介 🏅CSDN博客专家   🏅云计算领域优质创作者   🏅华为云开发者社区专家博主   🏅阿里云开发者社区专家博主 💊交流社区:运维交流社区 欢迎大家的加入&#xff01…

Linux下php8安装phpredis扩展的方法

Linux下php8安装phpredis扩展的方法 下载redis扩展执行安装编辑php.ini文件重启php-fpmphpinfo 查看 下载redis扩展 前提是已经安装好redis服务了 php-redis下载地址 https://github.com/phpredis/phpredis 执行命令 git clone https://github.com/phpredis/phpredis.git执行…

训练大模型所需要的内存计算

计算训练一个7B参数大模型所需的显存,主要涉及以下几个方面: 1. 模型参数 每个参数通常需要4字节(32位浮点数),因此7B参数的显存需求为: 2. 优化器状态 常见的优化器如Adam,每个参数需要存…

笋瓜果实的代谢组学和转录组分析-文献精读103

Metabolomics and Transcription Profiling of Pumpkin Fruit Reveals Enhanced Bioactive Flavonoids and Coumarins in Giant Pumpkin (Cucurbita maxima) 笋瓜果实的代谢组学和转录组分析揭示了笋瓜(Cucurbita maxima)中生物活性黄酮和香豆素的增强 …

Jenkins下载 Maven、Allure 插件并且配置环境

文章目录 Jenkins在插件中心下载 maven、allure插件maven插件下载allure插件下载 配置maven、allure 往期推荐: 最新! 在 Linux上搭建Jenkins环境! Jenkins邮件通知的详细配置含邮件通知模板! Jenkin配置企业微信通知 Jenkins在插件中心下载 maven、…

【深度学习】微积分

微积分 在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。 为了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。 如图2.4.1所示&#xff0c…

宝塔Linux+docker部署nginx出现403 Forbidden

本文主要讲述了宝塔docker部署nginx出现403 Forbidden的原因,以及成功部署前端的方法步骤。 目录 1、问题描述2、问题检测2.1 检测监听端口是否异常2.2 检测Docker容器是否异常2.2.1 打开宝塔Linux的软件商店,找到Docker管理器,查看前端容器是…

Tensor 基本操作2 理解 tensor.max 操作,沿着给定的 dim 是什么意思 | PyTorch 深度学习实战

前一篇文章,Tensor 基本操作1 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 目录 Tensor 基本操作torch.max默认指定维度 Tensor 基本操作 torch.max torch.max 实现降维运算,基于指定的 d…

[Linux] 进程管理与调度机制

文章目录 一.进程前言1.冯诺依曼体系结构2.操作系统 二.进程相关概念1.PCB2.查看进程标识符3.父与子进程 三.进程状态1.状态类别1).运行2).阻塞3).挂起 2.Linux下的状态1).R(running)2).S(Sleeping)3).D(disk sleeping)4).T(stopped)5).t(tracing stopped)6).Z(僵尸进程)7).孤儿…

复位信号的同步与释放(同步复位、异步复位、异步复位同步释放)

文章目录 背景前言一、复位信号的同步与释放1.1 同步复位1.1.1 综述1.1.2 优缺点 1.2 recovery time和removal time1.3 异步复位1.3.1 综述1.3.2 优缺点 1.4 同步复位 与 异步复位1.5 异步复位、同步释放1.5.1 总述1.5.2 机理1.5.3 复位网络 二、思考与补充2.1 复…

Unity中关于实现 管道水流+瀑布流动+大肠蠕动效果笔记

Unity中关于实现 管道水流瀑布流动大肠蠕动效果笔记 效果展示: 参考资料及链接: 1、如何在 Unity 中创建水效果 - 水弯曲教程 https://www.youtube.com/watch?v3CcWus6d_B8 关于补充个人技能中:顶点噪波影响网格着色器配合粒子实现水特效 …

Cloudpods是一个开源的Golang实现的云原生的融合多云/混合云的云平台,也就是一个“云上之云”。

Cloudpods是一个开源的Golang实现的云原生的融合多云/混合云的云平台,也就是一个“云上之云”。Cloudpods不仅可以管理本地的虚拟机和物理机资源,还可以管理多个云平台和云账号。Cloudpods隐藏了这些异构基础设施资源的数据模型和API的差异,对…

【LeetCode】--- MySQL刷题集合

1.组合两个表(外连接) select p.firstName,p.lastName,a.city,a.state from Person p left join Address a on p.personId a.personId; 以左边表为基准,去连接右边的表。取两表的交集和左表的全集 2.第二高的薪水 (子查询、if…

JavaScript学习笔记(3)

一.BOM对象 BOM的全称是Browser Object Model,翻译过来是浏览器对象模型。也就 是JavaScript将浏览器的各个组成部分封装成了对象。我们要操作浏览器的部分功能,可以通过操作 BOM对象的相关属性或者函数来完成。例如:我们想要将浏览器的地址改为 http:/…

DRG/DIP 2.0时代下基于PostgreSQL的成本管理实践与探索(下)

五、数据处理与 ETL 流程编程实现 5.1 数据抽取与转换(ETL) 在 DRG/DIP 2.0 时代的医院成本管理中,数据抽取与转换(ETL)是将医院各个业务系统中的原始数据转化为可供成本管理分析使用的关键环节。这一过程涉及从医院 HIS 系统中抽取患者诊疗数据,并对其进行格式转换、字…

【玩转全栈】----YOLO8训练自己的模型并应用

继上篇: 【玩转全栈】---基于YOLO8的图片、视频目标检测-CSDN博客 相信大家已经可以训练一些图片和视频了,接下来我将为大家介绍如何训练自己的特定模型,并用其进行检测 目录 准备数据 图片数据 标识数据 配置文件 运行 测试训练结果 存在的问…

简洁实用的wordpress外贸模板

简洁、实用、大气的wordpress外贸模板,适合跨境电商搭建外贸B2B产品展示型网站。 简洁实用的wordpress外贸模板 - 简站WordPress主题简洁、实用、大气的wordpress外贸模板,适合跨境电商搭建外贸B2B产品展示型网站。https://www.jianzhanpress.com/?p828…

Caesar

Caesar 打开.txt: oknqdbqmoq{kag_tmhq_xqmdzqp_omqemd_qzodkbfuaz} 根据题目判断是凯撒密码,flag前头是cyberpeace{},可以得到偏移量是12. 所以: cyberpeace{you_have_learned_caesar_encryption} 下面是我找的关于凯撒密码的解密脚本 c…

OpenEuler学习笔记(四):OpenEuler与CentOS的区别在那里?

OpenEuler与CentOS的对比 一、基本信息 起源与背景: OpenEuler:由华为发起,后捐赠给开放原子开源基金会,旨在构建一个开放、多元化的云计算和边缘计算平台,以满足华为及其他企业的硬件和软件需求。CentOS:…