【机器学习:三十二、强化学习:理论与应用】

news2025/2/5 12:44:10

1. 强化学习概述

**强化学习(Reinforcement Learning, RL)**是一种机器学习方法,旨在通过试验与反馈的交互,使智能体(Agent)在动态环境中学习决策策略,以最大化累积奖励(Cumulative Reward)。
相比监督学习和无监督学习,强化学习更关注长期目标,而非简单地从标签中学习。

  1. 核心概念

    • 智能体(Agent):进行学习和决策的主体。
    • 环境(Environment):智能体所在的动态系统,提供反馈。
    • 状态(State):环境的当前表示,智能体需要基于状态采取行动。
    • 动作(Action):智能体对状态的响应行为。
    • 奖励(Reward):环境提供的反馈信号,用于评估动作的好坏。
  2. 主要特性

    • 探索与利用:智能体需要在探索未知的行为结果与利用已有知识之间找到平衡。
    • 序列决策:强化学习目标是通过一系列决策实现长期利益最大化,而非单次结果优化。
  3. 应用领域

    • 机器人控制:自动化路径规划与操作。
    • 游戏AI:如AlphaGo在围棋中的成功应用。
    • 金融领域:动态投资组合优化。
    • 自动驾驶:车辆决策与路径规划。

2. 强化学习的基本框架

强化学习的理论基础通常以**马尔可夫决策过程(Markov Decision Process, MDP)**为框架。MDP通过数学模型描述环境与智能体的交互。

  1. 马尔可夫决策过程

    • 定义:MDP由状态空间 S S S 、动作空间 A A A 、转移概率 P ( s ′ ∣ s , a ) P(s'|s, a) P(ss,a) 、奖励函数 R ( s , a ) R(s, a) R(s,a) 和折扣因子 γ \gamma γ 构成。
    • 马尔可夫性:未来状态仅取决于当前状态与动作,与历史无关。
  2. 策略与价值函数

    • 策略(Policy):智能体的行为规则,可分为确定性策略和随机策略。
      • 确定性策略: π ( s ) = a \pi(s) = a π(s)=a ,即在状态 s s s 下总选择动作 a a a
      • 随机策略: π ( a ∣ s ) \pi(a|s) π(as) ,即在状态 s s s 下以概率 π ( a ∣ s ) \pi(a|s) π(as) 选择动作 a a a
    • 价值函数(Value Function):衡量状态或动作的长期回报期望值。
      • 状态价值函数: V π ( s ) = E [ R t ∣ s ] V^\pi(s) = \mathbb{E}[R_t|s] Vπ(s)=E[Rts]
      • 动作价值函数: Q π ( s , a ) = E [ R t ∣ s , a ] Q^\pi(s, a) = \mathbb{E}[R_t|s, a] Qπ(s,a)=E[Rts,a]
  3. 强化学习的目标
    寻找最优策略 π ∗ \pi^* π ,使得累积奖励 G t = ∑ t = 0 ∞ γ t R t G_t = \sum_{t=0}^\infty \gamma^t R_t Gt=t=0γtRt 最大化。


3. 强化学习的主要算法

  1. 基于值的算法

    • Q-learning:通过学习动作价值函数 Q ( s , a ) Q(s, a) Q(s,a) 实现策略优化。

      • 更新公式:
        Q ( s , a ) ← Q ( s , a ) + α [ R + γ max ⁡ a ′ Q ( s ′ , a ′ ) − Q ( s , a ) ] Q(s, a) \leftarrow Q(s, a) + \alpha \left[R + \gamma \max_{a'} Q(s', a') - Q(s, a)\right] Q(s,a)Q(s,a)+α[R+γamaxQ(s,a)Q(s,a)]

      • 特点:无需环境模型,适合离线学习。

  2. 基于策略的算法

    • 策略梯度方法:直接优化策略参数,通过梯度上升找到最优策略。

      • 优化目标:
        J ( θ ) = E π [ R ] J(\theta) = \mathbb{E}_\pi[R] J(θ)=Eπ[R]
        梯度计算:
        ∇ θ J ( θ ) = E [ ∇ θ log ⁡ π θ ( a ∣ s ) Q π ( s , a ) ] \nabla_\theta J(\theta) = \mathbb{E}[\nabla_\theta \log \pi_\theta(a|s) Q^\pi(s, a)] θJ(θ)=E[θlogπθ(as)Qπ(s,a)]

      • 优点:适合连续动作空间,能够产生随机策略。

  3. 基于值与策略结合的算法

    • Actor-Critic 方法:结合策略优化和值函数估计,分为“Actor”(策略)和“Critic”(价值评估)。
    • 优势:兼具策略梯度与值迭代的优点,收敛速度快。
  4. 深度强化学习

    • 将深度学习与强化学习结合,使智能体能够处理高维状态空间。
    • 代表算法:Deep Q-Network(DQN),Trust Region Policy Optimization(TRPO),Proximal Policy Optimization(PPO)。

4. 强化学习的挑战与解决方案

  1. 稀疏奖励问题

    • 挑战:奖励信号过于稀疏,智能体难以有效学习。
    • 解决方案
      • 引入奖励塑形(Reward Shaping)。
      • 使用模仿学习加速初始策略优化。
  2. 探索与利用的平衡

    • 挑战:过度探索会降低效率,过度利用可能陷入局部最优。
    • 解决方案
      • 使用 ϵ \epsilon ϵ -贪婪策略或软策略探索。
      • 引入随机性或熵正则化鼓励探索。
  3. 高维状态与动作空间

    • 挑战:状态空间或动作空间过大,导致计算成本高。
    • 解决方案
      • 使用函数逼近(如神经网络)替代表格方法。
      • 采用层次化强化学习(Hierarchical RL)。
  4. 样本效率与稳定性

    • 挑战:强化学习通常需要大量样本,且算法不易稳定。
    • 解决方案
      • 引入经验回放(Experience Replay)。
      • 使用目标网络(Target Network)稳定训练过程。

5. 强化学习的案例分析

  1. AlphaGo

    • 目标:在围棋中击败人类玩家。
    • 技术:结合蒙特卡洛树搜索(MCTS)与深度强化学习,利用神经网络估计动作价值和策略分布。
  2. 自动驾驶

    • 目标:优化车辆导航与驾驶行为。
    • 技术:强化学习用于路径规划、障碍物规避和车速控制。
  3. 游戏AI

    • 目标:实现复杂游戏中的智能行为。
    • 案例:Dota 2 中 OpenAI Five 使用多智能体强化学习技术。

6. 强化学习的未来发展方向

  1. 跨域强化学习

    • 通过迁移学习和元学习,使强化学习算法能在不同任务之间共享知识。
  2. 样本效率优化

    • 结合模型预测和环境模拟,减少实际交互数据的需求。
  3. 强化学习与大语言模型结合

    • 通过自然语言描述任务目标,提升强化学习的可解释性和普适性。
  4. 强化学习的安全性与伦理问题

    • 关注智能体的决策透明性和行为安全性,避免潜在风险。

7. 总结

强化学习是机器学习的重要分支,其特点在于动态环境中的决策优化能力。通过理论发展与技术创新,强化学习在多个领域取得了显著进展。未来,强化学习将进一步融合深度学习、迁移学习等技术,推动更智能、更高效的人工智能系统的构建。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2278488.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RDD和DataFrame两种数据结构的对比

文章目录 1. 实战概述2. RDD(弹性分布式数据集)2.1 RDD概念2.2 RDD特点2.3 实战操作 3. DataFrame(数据帧)3.1 DataFrame概念3.2 DataFrame优点3.3 实战操作 4. 实战小结 1. 实战概述 今天我们将深入探讨 Apache Spark 中的两种核…

中职网络建设与运维ansible服务

ansible服务 填写hosts指定主机范围和控制节点后创建一个脚本,可以利用简化脚本 1. 在linux1上安装系统自带的ansible-core,作为ansible控制节点,linux2-linux7作为ansible的受控节点 Linux1 Linux1-7 Yum install ansible-core -y Vi /etc/ansible/hosts 添加…

Kibana 控制台中提供语义、向量和混合搜索

作者:来自 Elastic Mark_Laney 想要将常规 Elasticsearch 查询与新的 AI 搜索功能结合起来吗?那么,你不需要连接到某个第三方的大型语言模型(LLM)吗?不。你可以使用 Elastic 的 ELSER 模型来改进现有搜索&a…

多种 Docker 镜像拉取解决方案与实践

最近国内 Docker 镜像拉取不太通畅,尝试了几种镜像拉取的方式,写篇博客分享一下。 原以为只是 docker hub 被毙了,上机器一操作,官方的下载地址也被毙了,真是从源头解决问题。 不过还好目前还有其他源能用&#xff0…

2025边缘计算新年沙龙成功举办,共话边缘AI未来

1月11日下午,北京市海淀区中关村创业大街热闹非凡,以“云边腾跃,蛇启新航”为主题的 2025边缘计算新年沙龙 盛大举行。本次活动汇聚了边缘计算、人工智能以及云边协同领域的顶尖专家、学者和从业者,共同探讨技术前沿与实际应用场景…

使用redis-cli命令实现redis crud操作

项目场景: 线上环境上redis中的key影响数据展示,需要删除。但环境特殊没办法通过 redis客户端工具直连。只能使用redis-cli命令来实现。 操作步骤: 1、确定redis安装的服务器; 2、找到redis的安装目录下 ##找到redis安装目…

CentOS 下载软件时报Error: Failed to synchronize cache for repo ‘AppStream‘解决方法

下载软件时出现以下问题 直接把CentOS-AppStream.repo改个名字就行 cd /etc/yum.repos.d/ mv CentOS-AppStream.repo CentOS-AppStream.repo.bak就可以了 解决思路 把AI问遍,无人会,解决法 想要下载软件通通失败了,解决方法当然是问AI&am…

【深度学习】神经网络之Softmax

Softmax 函数是神经网络中常用的一种激活函数,尤其在分类问题中广泛应用。它将一个实数向量转换为概率分布,使得每个输出值都位于 [0, 1] 之间,并且所有输出值的和为 1。这样,Softmax 可以用来表示各类别的预测概率。 Softmax 函…

python管理工具:conda部署+使用

python管理工具:conda部署使用 一、安装部署 1、 下载 - 官网下载: https://repo.anaconda.com/archive/index.html - wget方式: wget -c https://repo.anaconda.com/archive/Anaconda3-2023.03-1-Linux-x86_64.sh2、 安装 在conda文件的…

当PHP遇上区块链:一场奇妙的技术之旅

PHP 与区块链的邂逅 在技术的广袤宇宙中,区块链技术如同一颗耀眼的新星,以其去中心化、不可篡改、透明等特性,掀起了一场席卷全球的变革浪潮。众多开发者怀揣着对新技术的热忱与探索精神,纷纷投身于区块链开发的领域,试…

unity——Preject3——开始界面拼面板

目录 1.创建panel,去掉panel自带的image,自己加一个image,使用锚点分配好 2.锚点(快捷键点击后 ALTShift) 锚点是什么? 锚点的实际例子 例子1:固定在父容器的中心 例子2:对齐到…

PyTorch使用教程(6)一文讲清楚torch.nn和torch.nn.functional的区别

torch.nn 和 torch.nn.functional 在 PyTorch 中都是用于构建神经网络的重要组件,但它们在设计理念、使用方式和功能上存在一些显著的区别。以下是关于这两个模块的详细区别: 1. 继承方式与结构 torch.nn torch.nn 中的模块大多数是通过继承 torch.nn…

传统以太网问题与VLAN技术详解

传统以太网的问题 广播域:在网络中能接收同一广播信息的所有设备(计算机、交换机)等的集合 说明:在一个广播域内,当一个设备发送广播帧时,该域内的所有设备都能接收到这个广播帧。工作原理:在以…

OpenAI Whisper:语音识别技术的革新者—深入架构与参数

当下语音识别技术正以前所未有的速度发展,极大地推动了人机交互的便利性和效率。OpenAI的Whisper系统无疑是这一领域的佼佼者,它凭借其卓越的性能、广泛的适用性和创新的技术架构,正在重新定义语音转文本技术的规则。今天我们一起了解一下Whi…

WPS计算机二级•高效操作技巧

听说这里是目录哦 斜线表头 展示项目名称🍋‍🟩横排转竖排🍐批量删除表格空白行🍈方法一方法二建辅助列找空值 能量站😚 斜线表头 展示项目名称🍋‍🟩 选中单元格,单击右键➡️“设…

RabbitMQ实现延迟消息发送——实战篇

在项目中,我们经常需要使用消息队列来实现延迟任务,本篇文章就向各位介绍使用RabbitMQ如何实现延迟消息发送,由于是实战篇,所以不会讲太多理论的知识,还不太理解的可以先看看MQ的延迟消息的一个实现原理再来看这篇文章…

《Keras 3 在 TPU 上的肺炎分类》

Keras 3 在 TPU 上的肺炎分类 作者:Amy MiHyun Jang创建日期:2020/07/28最后修改时间:2024/02/12描述:TPU 上的医学图像分类。 (i) 此示例使用 Keras 3 在 Colab 中查看 GitHub 源 简介 设置 本教程将介…

1.17组会汇报

STRUC-BENCH: Are Large Language Models Good at Generating Complex Structured Tabular Data? STRUC-BENCH:大型语言模型擅长生成复杂的结构化表格数据吗?23年arXiv.org 1概括 这篇论文旨在评估大型语言模型(LLMs)在生成结构…

PyTorch使用教程(2)-torch包

1、简介 torch包是PyTorch框架最外层的包,主要是包含了张量的创建和基本操作、随机数生成器、序列化、局部梯度操作的上下文管理器等等,内容很多。我们基础学习的时候,只有关注张量的创建、序列化,随机数、张量的数学数学计算等常…

idea gradle compiler error: package xxx does not exist

idea 编译运行task时报项目内的包不存在,如果你试了网上的其它方法还不能解决,应该是你更新了新版idea,项目用的是旧版jdk,请在以下编译器设置中把项目JDK字节码版本设为8(jdk1.8,我这里是17请自行选择&…