初学stm32 --- CAN

news2025/1/18 4:07:40

目录

CAN介绍

CAN总线拓扑图

CAN总线特点

CAN应用场景

CAN物理层

CAN收发器芯片介绍

 CAN协议层

数据帧介绍

CAN位时序介绍 

数据同步过程

硬件同步

 再同步

CAN总线仲裁

STM32 CAN控制器介绍

CAN控制器模式

 CAN控制器模式

 CAN控制器框图

发送处理

接收处理

 接收过滤器

CAN控制器位时序

CAN相关寄存器介绍(F1 / F4 / F7)

CAN主控制寄存器(CAN_MCR)

CAN位时序寄存器(CAN_BTR)

CAN 标识符寄存器(CAN_(T/R)IxR)

数据长度和时间戳寄存器(CAN_(T/R)DTxR)

 CAN低位数据寄存器(CAN_(T/R)DLxR)

 CAN高位数据寄存器(CAN_(T/R)DHxR)

 CAN过滤器位宽寄存器(CAN_FS1R)

CAN 过滤器FIFO关联寄存器(CAN_FFA1R)

CAN 过滤器组x寄存器(CAN_FxR(1/2))

CAN相关HAL库驱动介绍

CAN外设相关重要结构体:

结构体成员与寄存器情况

CAN基本驱动步骤

过滤器组设置实例:


CAN介绍

        CAN(Controller Area Network),是ISO国际标准化的串行通信协议

        为了满足汽车产业的“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需求。

        低速CAN(ISO11519)通信速率10~125Kbps,总线长度可达1000

        高速CAN(ISO11898)通信速率125Kbps~1Mbps,总线长度≤40米(经典CAN)

        CAN FD 通信速率可达5Mbps,并且兼容经典CAN,遵循ISO 11898-1 做数据收发

        更多CAN的历史知识,可以上CAN in Automation(CiA) 官网了解。

CAN总线拓扑图

         终端电阻,用于阻抗匹配,以减少回波反射

        CAN总线由两根线( CANL CANH )组成,允许挂载多个设备节点(低速CAN:20 高速CAN:30)。

CAN总线特点

  1)多主控制                  每个设备都可以主动发送数据

  2)系统的柔软性           没有类似地址的信息,添加设备不改变原来总线的状态

  3)通信速度                  速度快,距离远

  4)错误检测&错误通知&错误恢复功能

  5)故障封闭                  判断故障类型,并且进行隔离

  6)连接节点多              速度与数量找个平衡

CAN应用场景

        CAN总线协议已广泛应用在汽车电子、工业自动化、船舶、医疗设备、工业设备等方面。

CAN物理层

        CAN使用差分信号进行数据传输,根据CAN_HCAN_L上的电位差来判断总线电平。

        总线电平分为显性电平(逻辑0)和隐性电平(逻辑1),二者必居其一。

        显性电平具有优先权发送方通过使总线电平发生变化,将消息发送给接收方

电平

高速CAN

低速CAN

显性电平(0

UCAN_H – UCAN_L=  2V

UCAN_H – UCAN_L = 3V

隐性电平(1

UCAN_H – UCAN_L = 0V

UCAN_H – UCAN_L = - 1.5V

CAN收发器芯片介绍

 CAN协议层

          CAN总线以“帧”形式进行通信。CAN协议定义了5种类型的帧:数据帧、遥控帧、错误帧、过载帧、间隔帧,其中数据帧最为常用。

数据帧介绍

        数据帧由7段组成。数据帧又分为标准帧(CAN2.0A)和扩展帧(CAN2.0B),主要体现在仲裁段和控制段。

CAN位时序介绍 

        CAN总线以“位同步”机制,实现对电平的正确采样。位数据都由四段组成:同步段(SS)、传播时间段(PTS)、相位缓冲段1(PBS1)和相位缓冲段2(PBS2),每段又由多个位时序Tq组成。

        注意 : 节点监测到总线上信号的跳变在SS段范围内,表示节点与总线的时序是同步,此时采样点的电平即该位的电平。

        采样点是指读取总线电平,并将读到的电平作为位值的点。

        根据位时序,就可以计算CAN通信的波特率。

数据同步过程

        由于时钟频率误差、传输上的相位延迟引起偏差,所以需要数据同步

        CAN为了实现对总线电平信号的正确采样,数据同步分为硬件同步和再同步。

硬件同步

        节点通过CAN总线发送数据,一开始发送帧起始信号。总线上其他节点会检测帧起始信号在不在位数据的SS段内,判断内部时序与总线是否同步。

        假如不在SS段内,这种情况下,采样点获得的电平状态是不正确的。所以,节点会使用硬件同步方式调整, 把自己的SS段平移到检测到边沿的地方,获得同步,同步情况下,采样点获得的电平状态才是正确的。

 再同步

        再同步利用普通数据位的边沿信号(帧起始信号是特殊的边沿信号)进行同步。

        再同步的方式分为两种情况:超前和滞后,即边沿信号与SS段的相对位置。

        再同步时,PSB1和PSB2中增加或者减少的时间被称为“再同步补偿宽度(SJW)”,其范围:1~4 Tq

          限定了SJW值后,再同步时,不能增加限定长度的SJW值。SJW值较大时,吸收误差能力更强,但是通讯速度会下降。

        

CAN总线仲裁

决定优先级

        CAN总线处于空闲状态,最先开始发送消息的单元获得发送权。

        多个单元同时开始发送时,从仲裁段(报文ID)的第一位开始进行仲裁。连续输出显性电平最多的单元可继续发送,即首先出现隐性电平的单元失去对总线的占有权变为接收。

        

         竞争失败单元,会自动检测总线空闲,在第一时间再次尝试发送。

STM32 CAN控制器介绍

        STM32 CAN控制器(bxCAN),支持CAN 2.0ACAN 2.0B Active版本协议。

        CAN 2.0A 只能处理标准数据帧且扩展帧的内容会识别错误,而CAN 2.0B Active 可以处理标准数据帧和扩展数据帧。CAN 2.0B Passive只能处理标准数据帧且扩展帧的内容会忽略。

bxCAN主要特点:

   波特率最高可达1M bps

   支持时间触发通信(CAN的硬件内部定时器可以在TX/RX的帧起始位的采样点位置生成时间戳)

   具有3级发送邮箱

   具有3级深度的2个接收FIFO

   可变的过滤器组(最多28个)(F1只有14个)

CAN控制器模式

        CAN控制器的工作模式有三种:初始化模式、正常模式和睡眠模式。

 CAN控制器模式

CAN控制器的测试模式有三种:静默模式、环回模式和环回静默模式。(初始化模式下进行配置

 CAN控制器框图

 1CAN内核

        包含各种控制/状态/配置寄存器,可以配置模式、波特率等

2)发送邮箱

        用来缓存待发送的报文,最多可以缓存3个报文

3)接收FIFO

        缓存接收到的有效报文

4)接收过滤器

        筛选有效报文

发送处理

接收处理

 接收过滤器

        当总线上报文数据量很大时,总线上的设备会频繁获取报文,占用CPU。过滤器的存在,选择性接收有效报文,减轻系统负担。

        每个过滤器组都有两个32位寄存器CAN_FxR1CAN_FxR2。根据过滤器组的工作模式(位宽和选择模式)不同,寄存器的作用不尽相同。

        选择模式可设置屏蔽位模式标识符列表模式,寄存器内容的功能就有所区别。

        屏蔽位模式,可以选择出一组符合条件的报文。寄存器内容功能相当于是否符合条件。

        标识符列表模式,可以选择出几个特定ID的报文。寄存器内容功能就是标识符本身。

        REG中bit值代表的是匹配与否:1必须匹配 0不用关心

        屏蔽位寄存器中位值为1,表示与ID要必须匹配;位值为0,表示可不与ID匹配。

        在使能过滤器情况下,总线上广播的报文ID与过滤器的配置都不匹配,CAN控制器会丢弃该报文,不会进入到接收FIFO中。

        注意:标识符选择位IDE和帧类型RTR需要一致。不同过滤器组的工作模式可以设置为不同。

CAN控制器位时序

STM32CAN外设位时序分为三段:

        同步段 SYNC_SEG、        时间段1 BS1(PTS + PBS1、        时间段2 BS2

STM32F103,设TS1=8TS2=7BRP=3,波特率 = 36000 / [( 9 + 8 + 1 ) * 4] = 500Kbps

STM32F407,设TS1=6TS2=5BRP=5,波特率 = 42000 / [( 7 + 6 + 1 ) * 6] = 500Kbps

  注意:通信双方波特率需要一致才能通信成功。

CAN相关寄存器介绍(F1 / F4 / F7)

CAN主控制寄存器(CAN_MCR

 INRQ位,用于控制初始化请求。

CAN位时序寄存器(CAN_BTR

 STM32F103,设TS1=8TS2=7BRP=3,波特率 = 36000 / [( 9 + 8 + 1 ) * 4] = 500Kbps

CAN 标识符寄存器(CAN_(T/R)IxR

 x范围:1~3,3个发送邮箱                x范围:1~2,2个接收FIFO邮箱

         报文使用标准标识符,EXID[17:0]值无效

        TxRQ位置1,请求邮箱发送

        注意:报文使用扩展标识符时,STID[10:0]等效于EXID[28:18],与EXID[17:0]组成29位扩展标识符。

        

数据长度和时间戳寄存器(CAN_(T/R)DTxR

 x范围:1~3,3个发送邮箱                x范围:1~2,2个接收FIFO邮箱

        注意:DLC是多少,数据内容就有多少字节被发送,并不是每次都发送8个字节数据。

 CAN低位数据寄存器(CAN_(T/R)DLxR

 CAN高位数据寄存器(CAN_(T/R)DHxR

使用时间戳功能DLC必须为8字节

CAN过滤器模式寄存器(CAN_FM1R

 CAN过滤器位宽寄存器(CAN_FS1R

        注意:CAN外设只能使用的有的过滤器组,不能使用没有的过滤器组。 

CAN 过滤器FIFO关联寄存器(CAN_FFA1R

该寄存器决定了哪个FIFO寄存器有效(即RIxRRDTxRRDLxRRDHxR的‘x) 

CAN 过滤器组x寄存器(CAN_FxR(1/2)

CAN相关HAL库驱动介绍

CAN外设相关重要结构体:

CAN_InitTypeDefCAN_FilterTypeDefCAN_(T/R)xHeaderTypeDef

CAN_InitTypeDef

uint32_t Prescaler			/* 预分频 */
uint32_t Mode				/* 工作模式 */
uint32_t SyncJumpWidth		/* 再次同步跳跃宽度 */
uint32_t TimeSeg1			/* 时间段1(BS1)长度 */
uint32_t TimeSeg2			/* 时间段2(BS2)长度 */
uint32_t TimeTriggeredMode	/* 时间触发通信模式 */
uint32_t AutoBusOff			/* 总线自动关闭 */
uint32_t AutoWakeUp			/* 自动唤醒 */
uint32_t AutoRetransmission 	/* 自动重传 */
uint32_t ReceiveFifoLocked		/* 接收FIFO锁定 */
uint32_t TransmitFifoPriority	/*  传输FIFO优先级 */
CAN_FilterTypeDef

uint32_t FilterIdHigh			/* ID高字节 */
uint32_t FilterIdLow			/* ID低字节 */
uint32_t FilterMaskIdHigh	 	/* 掩码高字节 */
uint32_t FilterMaskIdLow		/* 掩码低字节 */
uint32_t FilterFIFOAssignment	/* 过滤器关联FIFO */
uint32_t FilterBank			/* 选择过滤器组 */
uint32_t FilterMode			/* 过滤器模式*/
uint32_t FilterScale			/* 过滤器位宽 */
uint32_t FilterActivation		/* 过滤器使能 */
Uint32_t SlaveStartFilterBank 	/* 从CAN选择启动过滤器组 单CAN没有意义*/

结构体成员与寄存器情况

 

CAN基本驱动步骤

1CAN参数初始化

        工作模式、波特率等        HAL_CAN_Init

2、使能CAN时钟和初始化相关引脚

        GPIO模式设为复用功能模式        HAL_CAN_MspInit

3、设置过滤器

        HAL_CAN_ConfigFilter 完成过滤器的初始化

4CAN数据接收和发送

        HAL_CAN_AddTxMessage 发送消息

        HAL_CAN_ GetRxMessage 接收数据

5、使能CAN相关中断/设置NVIC/编写中断服务函数

        __HAL_CAN_ENABLE_IT (可选)

过滤器组设置实例:

 

关于CAN中断 

        启用 CAN 接收 FIFO0 消息挂起中断

__HAL_CAN_ENABLE_IT(&g_can_handle_struct, CAN_IT_RX_FIFO0_MSG_PENDING);
  • __HAL_CAN_ENABLE_IT:这是 STM32 HAL 库提供的一个宏,用于启用 CAN 外设的中断。
  • CAN_IT_RX_FIFO0_MSG_PENDING:这个参数表示启用 CAN 接收 FIFO0 消息挂起中断
    • 当 CAN 接收 FIFO0 中有新的消息并且该消息已经准备好时,控制器会触发一个中断,允许外部应用程序处理接收到的消息。
    • FIFO(先进先出队列)用于存储接收到的 CAN 消息,FIFO0 是第一个 FIFO 队列,STM32 的 CAN 控制器通常有多个 FIFO 队列。

是的,您的理解是正确的。进入挂起中断后,您可以读取 can_rxheader_struct.StdId,因为当 CAN 控制器收到数据并通过过滤器后,会将其存放到 FIFO 队列中。中断会在 FIFO 中有新消息时触发,并通过 HAL 函数 HAL_CAN_GetRxMessage 将数据读取出来。

详细解释:

1. CAN 接收机制概述
  • CAN 总线是一个广播式协议,当总线上有设备发送消息时,所有连接的设备都能接收到这条消息。
  • 过滤器:CAN 控制器通常配置了过滤器来筛选感兴趣的消息,只有经过过滤器允许的消息才会被接收并存储到接收 FIFO 中。STM32 的 CAN 控制器可以通过配置多个过滤器来选择哪些消息应当接收。
  • FIFO 队列:接收到的有效消息会被存储到接收 FIFO(如 FIFO0)。消息排队存储,等待被中断服务程序处理。
2. 中断触发

当接收到一条消息,并且通过了过滤器的检查后,消息就会被存储到 FIFO 中。此时,如果启用了接收中断(例如通过 CAN_IT_RX_FIFO0_MSG_PENDING),并且 FIFO 中有新消息,CAN 中断会被触发

3. 读取接收的消息
  • 在进入中断处理函数 USB_LP_CAN1_RX0_IRQHandler 后,您可以通过 HAL_CAN_GetRxMessage 函数读取接收到的消息,并将消息的相关信息(如标识符)和数据存储到相应的结构体中。
  • 读取的消息头信息(如 StdIdIDERTRDLC 等)通常存储在 CAN_RxHeaderTypeDef 结构体中
4. 总结
  • 数据是被动接收的:当总线上有数据并且经过了过滤器的过滤,符合条件的消息会被存储到 FIFO 中。
  • 进入中断后,可以读取 can_rxheader_struct.StdId:一旦中断被触发,您可以通过 HAL_CAN_GetRxMessage 读取消息的标识符和数据,标识符信息存储在 can_rxheader_struct.StdId 中。
  • 过滤器的作用:过滤器用于筛选总线上接收到的消息,只有符合条件的消息才会存放到 FIFO 中,并触发中断。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2278286.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Golang笔记——协程同步

大家好,这里是Good Note,关注 公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Golang的协程同步的实现和应用场景。 文章目录 协程同步是什么?为什么需要协程同步?常见的协程同步机制互斥锁&#xff0…

Visual Studio Community 2022(VS2022)安装方法

废话不多说直接上图: 直接上步骤: 1,首先可以下载安装一个Visual Studio安装器,叫做Visual Studio installer。这个安装文件很小,很快就安装完成了。 2,打开Visual Studio installer 小软件 3&#xff0c…

目标检测新视野 | YOLO、SSD与Faster R-CNN三大目标检测模型深度对比分析

目录 引言 YOLO系列 网络结构 多尺度检测 损失函数 关键特性 SSD 锚框设计 损失函数 关键特性 Faster R-CNN 区域建议网络(RPN) 两阶段检测器 损失函数 差异分析 共同特点 基于深度学习 目标框预测 损失函数优化 支持多类别检测 应…

mac intel芯片下载安卓模拟器

一、调研 目前主流两个模拟器: 雷神模拟器 不支持macosmumu模拟器pro版 不支持macos intel芯片 搜索到mumu的Q&A中有 “Intel芯片Mac如何安装MuMu?” q&a🔗:https://mumu.163.com/mac/faq/install-on-intel-mac.html 提…

发送dubbo接口

史上最强,Jmeter接口测试-dubbo接口实战(超级详细)_jmeter调用dubbo接口-CSDN博客 干货分享:Dubbo接口及测试总结~ 谁说dubbo接口只能Java调用,我用Python也能轻松搞定 telnet xxx.xxx.xxx.xxx 端口号 再回车显示dub…

Leetcode 91. 解码方法 动态规划

原题链接&#xff1a;Leetcode 91. 解码方法 自己写的代码&#xff1a; class Solution { public:int numDecodings(string s) {int ns.size();vector<int> dp(n,1);if(s[n-1]0) dp[n-1]0;for(int in-2;i>0;i--){if(s[i]!0){string ts.substr(i,2);int tmpatoi(t.c…

SpringBoot源码解析(七):应用上下文结构体系

SpringBoot源码系列文章 SpringBoot源码解析(一)&#xff1a;SpringApplication构造方法 SpringBoot源码解析(二)&#xff1a;引导上下文DefaultBootstrapContext SpringBoot源码解析(三)&#xff1a;启动开始阶段 SpringBoot源码解析(四)&#xff1a;解析应用参数args Sp…

SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现

SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现 目录 SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现分类效果基本描述程序设计参考资料 分类效果 基本描述 SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长…

XML在线格式化 - 加菲工具

XML在线格式化 打开网站 加菲工具 选择“XML 在线格式化” 输入XML&#xff0c;点击左上角的“格式化”按钮 得到格式化后的结果

树莓派5--系统问题汇总

前言&#xff1a; 该文章是我在使用树莓派5时所遇到的问题以及解决方案&#xff0c;希望对遇到相同问题的能够有所帮助。我的树莓派系统版本为&#xff1a;Pi-OS-ROS_2024_09_29 注意&#xff1a;如果没有什么需求千万不要更新树莓派中任何软件或者系统&#xff0c;除非你真的…

C#学习笔记 --- 基础补充

1.operator 运算符重载&#xff1a;使自定义类可以当做操作数一样进行使用。规则自己定。 2.partial 分部类&#xff1a; 同名方法写在不同位置&#xff0c;可以当成一个类使用。 3.索引器&#xff1a;使自定义类可以像数组一样通过索引值 访问到对应的数据。 4.params 数…

【2024年华为OD机试】 (C卷,100分)- 免单统计(Java JS PythonC/C++)

一、问题描述 题目描述 华为商城举办了一个促销活动&#xff0c;如果某顾客是某一秒内最早时刻下单的顾客&#xff08;可能是多个人&#xff09;&#xff0c;则可以获取免单。 请你编程计算有多少顾客可以获取免单。 输入描述 输入为 n 行数据&#xff0c;每一行表示一位顾…

python中数据可视化库(Matplotlib)

python中数据可视化库&#xff08;Matplotlib&#xff09; 安装 Matplotlib基本使用绘图类型示例散点图 (Scatter Plot)柱状图 (Bar Chart)饼图 (Pie Chart)直方图 (Histogram) 自定义图表样式多面板图表 (Subplots)3D 图表 Matplotlib 是 Python 中一个非常流行的绘图库&#…

某国际大型超市电商销售数据分析和可视化

完整源码项目包获取→点击文章末尾名片&#xff01; 本作品将从人、货、场三个维度&#xff0c;即客户维度、产品维度、区域维度&#xff08;补充时间维度与其他维度&#xff09;对某国际大型超市的销售情况进行数据分析和可视化报告展示&#xff0c;从而为该超市在弄清用户消费…

DETR论文阅读

1. 动机 传统的目标检测任务需要大量的人工先验知识&#xff0c;例如预定义的先验anchor&#xff0c;NMS后处理策略等。这些人工先验知识引入了很多人为因素&#xff0c;且较难处理。如果能够端到端到直接生成目标检测结果&#xff0c;将会使问题变得很优雅。 2. 主要贡献 提…

工业视觉2-相机选型

工业视觉2-相机选型 一、按芯片类型二、按传感器结构特征三、按扫描方式四、按分辨率大小五、按输出信号六、按输出色彩接口类型 这张图片对工业相机的分类方式进行了总结&#xff0c;具体如下&#xff1a; 一、按芯片类型 CCD相机&#xff1a;采用电荷耦合器件&#xff08;CC…

《机器学习》——TF-IDF(关键词提取)

文章目录 TF-IDF简介TF-IDF应用场景TF-IDF模型模型参数主要参数 TF-IDF实例实例步骤导入数据和模块处理数据处理文章开头和分卷处理将各卷内容存储到数据帧jieba分词和去停用词处理 计算 TF-IDF 并找出核心关键词 TF-IDF简介 TF - IDF&#xff08;Term Frequency - Inverse Do…

LabVIEW与WPS文件格式的兼容性

LabVIEW 本身并不原生支持将文件直接保存为 WPS 格式&#xff08;如 WPS 文档或表格&#xff09;。然而&#xff0c;可以通过几种间接的方式实现这一目标&#xff0c;确保您能将 LabVIEW 中的数据或报告转换为 WPS 可兼容的格式。以下是几种常见的解决方案&#xff1a; ​ 导出…

CV 图像处理基础笔记大全(超全版哦~)!!!

一、图像的数字化表示 像素 数字图像由众多像素组成&#xff0c;是图像的基本构成单位。在灰度图像中&#xff0c;一个像素用一个数值表示其亮度&#xff0c;通常 8 位存储&#xff0c;取值范围 0 - 255&#xff0c;0 为纯黑&#xff0c;255 为纯白。例如&#xff0c;一幅简单的…

【JavaScript】比较运算符的运用、定义函数、if(){}...esle{} 语句

比较运算符 !><> < 自定义函数&#xff1a; function 函数名&#xff08;&#xff09;{ } 判断语句&#xff1a; if(判断){ }else if(判断){ 。。。。。。 }else{ } 代码示例&#xff1a; <!DOCTYPE html> <html> <head><meta charset&quo…