OpenCV相机标定与3D重建(54)解决透视 n 点问题(Perspective-n-Point, PnP)函数solvePnP()的使用

news2025/1/16 0:31:13
  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

根据3D-2D点对应关系找到物体的姿态。
cv::solvePnP 是 OpenCV 库中的一个函数,用于解决透视 n 点问题(Perspective-n-Point, PnP),即通过已知的 3D 点及其对应的 2D 图像点来估计物体的姿态(旋转和平移)。这个函数可以处理任意数量的点对,并且提供了多种算法来求解姿态。

此函数返回旋转和平移向量,这些向量将用物体坐标系表示的3D点变换到相机坐标系中,使用不同的方法:

P3P 方法(SOLVEPNP_P3P, SOLVEPNP_AP3P):需要4个输入点来返回一个唯一解。
SOLVEPNP_IPPE:输入点必须 >= 4 且物体点必须共面。
SOLVEPNP_IPPE_SQUARE:适用于标记姿态估计的特殊情况。输入点的数量必须是4。物体点必须按以下顺序定义:

  • 点 0: [-squareLength / 2, squareLength / 2, 0]
  • 点 1: [ squareLength / 2, squareLength / 2, 0]
  • 点 2: [ squareLength / 2, -squareLength / 2, 0]
  • 点 3: [-squareLength / 2, -squareLength / 2, 0]
    对于所有其他标志,输入点的数量必须 >= 4,且物体点可以是任意配置。

函数原型

bool cv::solvePnP
(
	InputArray 	objectPoints,
	InputArray 	imagePoints,
	InputArray 	cameraMatrix,
	InputArray 	distCoeffs,
	OutputArray 	rvec,
	OutputArray 	tvec,
	bool 	useExtrinsicGuess = false,
	int 	flags = SOLVEPNP_ITERATIVE 
)		

参数

  • 参数objectPoints:物体坐标空间中的物体点数组,格式为 Nx3 的单通道或 1xN/Nx1 的三通道,其中 N 是点的数量。也可以传递 vector。
  • 参数imagePoints:对应的图像点数组,格式为 Nx2 的单通道或 1xN/Nx1 的双通道,其中 N 是点的数量。也可以传递 vector。
  • 参数cameraMatrix:输入的相机内参矩阵 A = [ f x 0 c x 0 f y c y 0 0 1 ] A = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} A= fx000fy0cxcy1
  • 参数distCoeffs:输入的畸变系数向量 (k1, k2, p1, p2[, k3[, k4, k5, k6[, s1, s2, s3, s4[, τx, τy]]]]),包含 4、5、8、12 或 14 个元素。如果该向量为空,则假设畸变为零。
  • 参数rvec:输出的旋转向量(见 Rodrigues),与 tvec 一起使用,将模型坐标系中的点变换到相机坐标系中。
  • 参数tvec:输出的平移向量。
  • 参数useExtrinsicGuess:仅用于 SOLVEPNP_ITERATIVE 方法。如果为 true(1),函数会使用提供的 rvec 和 tvec 值作为旋转和平移向量的初始近似值,并进一步优化它们。
  • 参数flags:解决 PnP 问题的方法,详见 calib3d_solvePnP_flags。

注意

  • 关于如何使用 solvePnP 进行平面增强现实的一个示例可以在 opencv_source_code/samples/python/plane_ar.py 找到。

  • 如果你使用的是 Python:

    • Numpy 数组切片不能作为输入,因为 solvePnP 需要连续的数组(在版本 2.4.9 的 modules/calib3d/src/solvepnp.cpp 文件大约第 55 行通过 cv::Mat::checkVector() 断言强制要求)。
    • P3P 算法要求图像点位于形状为 (N,1,2) 的数组中,因为它调用了 undistortPoints(在版本 2.4.9 的 modules/calib3d/src/solvepnp.cpp 文件大约第 75 行),这需要双通道信息。
    • 因此,给定一些数据 D = np.array(…),其中 D.shape = (N,M),为了使用其子集作为例如 imagePoints,必须有效地将其复制到一个新数组中:imagePoints = np.ascontiguousarray(D[:,:2]).reshape((N,1,2))。
  • 方法 SOLVEPNP_DLS 和 SOLVEPNP_UPNP 不能使用,因为当前实现不稳定,有时会给出完全错误的结果。如果你传递了这两个标志中的一个,则会使用 SOLVEPNP_EPNP 方法代替。

  • 在一般情况下,最少需要 4 个点。

  • 对于 SOLVEPNP_P3P 和 SOLVEPNP_AP3P 方法,必须使用恰好 4 个点(前 3 个点用于估计 P3P 问题的所有解,最后一个点用于保留最小化重投影误差的最佳解)。

  • 使用 SOLVEPNP_ITERATIVE 方法且 useExtrinsicGuess=true 时,最少需要 3 个点(3 个点足以计算姿态,但最多有 4 个解)。初始解应接近全局解以收敛。

  • 使用 SOLVEPNP_IPPE 时,输入点必须 >= 4 且物体点必须共面。

  • 使用 SOLVEPNP_IPPE_SQUARE 时,这是一个适用于标记姿态估计的特殊情况。输入点的数量必须是 4。物体点必须按以下顺序定义:

    • 点 0: [-squareLength / 2, squareLength / 2, 0]
    • 点 1: [ squareLength / 2, squareLength / 2, 0]
    • 点 2: [ squareLength / 2, -squareLength / 2, 0]
    • 点 3: [-squareLength / 2, -squareLength / 2, 0]

使用 SOLVEPNP_SQPNP 时,输入点必须 >= 3。

代码示例


#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

using namespace cv;
using namespace std;

int main()
{
    // 假设我们有一个已知的 3D 点集 (例如一个正方形的四个角)
    std::vector< Point3f > objectPoints = { Point3f( -1.0f, -1.0f, 0.0f ), Point3f( 1.0f, -1.0f, 0.0f ), Point3f( 1.0f, 1.0f, 0.0f ), Point3f( -1.0f, 1.0f, 0.0f ) };

    // 对应的 2D 图像点 (这些点是从图像中检测到的特征点)
    std::vector< Point2f > imagePoints = { Point2f( 594.0f, 487.0f ), Point2f( 673.0f, 487.0f ), Point2f( 673.0f, 552.0f ), Point2f( 594.0f, 552.0f ) };

    // 相机内参矩阵 (假设已知)
    Mat cameraMatrix = ( Mat_< double >( 3, 3 ) << 718.856, 0, 607.1928, 0, 718.856, 185.2157, 0, 0, 1 );

    // 畸变系数 (假设已知)
    Mat distCoeffs = Mat::zeros( 5, 1, CV_64F );  // 如果没有畸变或忽略畸变,则可以是零矩阵

    // 初始化输出变量
    Mat rvec;  // 旋转向量
    Mat tvec;  // 平移向量

    // 调用 solvePnP 函数
    bool success = solvePnP( objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, false, SOLVEPNP_ITERATIVE );

    if ( success )
    {
        cout << "Rotation Vector:\n" << rvec << "\nTranslation Vector:\n" << tvec << endl;

        // 可选:将旋转向量转换为旋转矩阵以更好地理解结果
        Mat rotationMatrix;
        Rodrigues( rvec, rotationMatrix );
        cout << "Rotation Matrix:\n" << rotationMatrix << endl;
    }
    else
    {
        cout << "solvePnP failed." << endl;
    }

    return 0;
}

运行结果

Rotation Vector:
[0.2895361443049176;
 0.01328548677652798;
 -0.008684530349597173]
Translation Vector:
[0.6665924885943908;
 8.493287223698232;
 18.23641869746051]
Rotation Matrix:
[0.999874917527441, 0.01047321277960457, 0.01185162915241468;
 -0.006653461772789516, 0.9583398410008748, -0.2855529383439369;
 -0.01434854508064377, 0.2854383663148514, 0.9582896526048779]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2277252.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何在 Linux、MacOS 以及 Windows 中打开控制面板

控制面板不仅仅是一系列图标和菜单的集合&#xff1b;它是通往优化个人计算体验的大门。通过它&#xff0c;用户可以轻松调整从外观到性能的各种参数&#xff0c;确保他们的电脑能够完美地适应自己的需求。无论是想要提升系统安全性、管理硬件设备&#xff0c;还是简单地改变桌…

Mycat读写分离搭建及配置超详细!!!

目录 一、Mycat产生背景二、Mycat介绍三、Mycat安装四、Mycat搭建读写分离1、 搭建MySQL数据库主从复制2、 基于mysql主从复制搭建MyCat读写分离 五、Mycat启动常见错误处理1、Caused by: io.mycat.config.util.ConfigException: SelfCheck### schema TESTDB refered by user u…

空指针:HttpSession异常,SpringBoot集成WebSocket

异常可能性&#xff1a; 404 &#xff1a; 请检查拦截器是否将请求拦截WebSocket握手期间HttpSession为空 HttpSession为空 方法一 &#xff1a; 网上参考大量的文档&#xff0c;有说跟前端请求域名有关系的。 反正对我来说&#xff0c;没啥用无法连接。 需使用 localhost&a…

【大数据】机器学习------决策树

一、基本流程 决策树是一种基于树结构的分类和回归方法&#xff0c;它通过对特征空间进行划分&#xff0c;每个内部节点表示一个特征测试&#xff0c;每个分支代表一个测试输出&#xff0c;每个叶节点代表一个类别或回归值。 特征选择&#xff1a;根据某种准则&#xff08;如信…

服务器数据恢复—raid5故障导致上层ORACLE无法启动的数据恢复案例

服务器数据恢复环境&故障&#xff1a; 一台服务器上的8块硬盘组建了一组raid5磁盘阵列。上层安装windows server操作系统&#xff0c;部署了oracle数据库。 raid5阵列中有2块硬盘的硬盘指示灯显示异常报警。服务器操作系统无法启动&#xff0c;ORACLE数据库也无法启动。 服…

Day05-后端Web基础——TomcatServletHTTP协议SpringBootWeb入门

目录 Web基础知识课程内容1. Tomcat1.1 简介1.2 基本使用1.2.1 下载1.2.2 安装与卸载1.2.3 启动与关闭1.2.4 常见问题 2. Servlet2.1 快速入门2.1.1 什么是Servlet2.1.2 入门程序2.1.3 注意事项 2.2 执行流程 3. HTTP协议3.1 HTTP-概述3.1.1 介绍3.1.2 特点 3.2 HTTP-请求协议3…

【已解决】【记录】2AI大模型web UI使用tips 本地

docker desktop使用 互动 如果需要发送网页链接&#xff0c;就在链接上加上【#】号 如果要上传文件就点击这个➕号 中文回复 命令它只用中文回复&#xff0c;在右上角打开【对话高级设置】 输入提示词&#xff08;提示词使用英文会更好&#xff09; Must reply to the us…

Deep4SNet: deep learning for fake speech classification

Deep4SNet&#xff1a;用于虚假语音分类的深度学习 摘要&#xff1a; 虚假语音是指即使通过人工智能或信号处理技术产生的语音记录。生成虚假录音的方法有"深度语音"和"模仿"。在《深沉的声音》中&#xff0c;录音听起来有点合成&#xff0c;而在《模仿》中…

Docker save load 镜像 tag 为 <none>

一、场景分析 我从 docker hub 上拉了这么一个镜像。 docker pull tomcat:8.5-jre8-alpine 我用 docker save 命令想把它导出成 tar 文件以便拷贝到内网机器上使用。 docker save -o tomcat-8.5-jre8-alpine.tar.gz 镜像ID 当我把这个镜像传到别的机器&#xff0c;并用 dock…

备战蓝桥杯 队列和queue详解

目录 队列的概念 队列的静态实现 总代码 stl的queue 队列算法题 1.队列模板题 2.机器翻译 3.海港 双端队列 队列的概念 和栈一样&#xff0c;队列也是一种访问受限的线性表&#xff0c;它只能在表头位置删除&#xff0c;在表尾位置插入&#xff0c;队列是先进先出&…

工厂物流管理系统方案(二):危险品车辆专用导航系统架构设计深度剖析

本文专为IT架构师、物流技术专家、软件开发工程师及对危险品运输导航技术有深入探索需求的读者撰写&#xff0c;旨在全面解析危险品车辆专用导航系统的架构设计&#xff0c;展现其技术深度与复杂性&#xff0c;为行业同仁提供权威的技术参考与实践指导。如需获取危险品车辆专用…

用 Python 从零开始创建神经网络(十九):真实数据集

真实数据集 引言数据准备数据加载数据预处理数据洗牌批次&#xff08;Batches&#xff09;训练&#xff08;Training&#xff09;到目前为止的全部代码&#xff1a; 引言 在实践中&#xff0c;深度学习通常涉及庞大的数据集&#xff08;通常以TB甚至更多为单位&#xff09;&am…

No.1|Godot|俄罗斯方块复刻|棋盘和初始方块的设置

删掉基础图标新建assets、scenes、scripts文件夹 俄罗斯方块的每种方块都是由四个小方块组成的&#xff0c;很适合放在网格地图中 比如网格地图是宽10列&#xff0c;高20行 要实现网格的对齐和下落 Node2D节点 新建一个Node2D 添加2个TileMapLayer 一个命名为Board&…

蓝桥云客第 5 场 算法季度赛

题目&#xff1a; 2.开赛主题曲【算法赛】 - 蓝桥云课 问题描述 蓝桥杯组委会创作了一首气势磅礴的开赛主题曲&#xff0c;其歌词可用一个仅包含小写字母的字符串 S 表示。S 中的每个字符对应一个音高&#xff0c;音高由字母表顺序决定&#xff1a;a1,b2,...,z26。字母越靠后…

刀客doc:快手的商业化架构为什么又调了?

一、 1月10日&#xff0c;快手商业化及电商事业部进行新一轮的架构调整。作为2025年快手的第一次大调整&#xff0c;变动最大的是负责广告业务的商业化事业部。快手商业化将原来的8个业务中心&#xff0c;现在统合成了5个&#xff0c;行业归拢看上去更加明晰了。 根据自媒体《…

6.2 MySQL时间和日期函数

以前我们就用过now()函数来获得系统时间&#xff0c;用datediff()函数来计算日期相差的天数。我们在计算工龄的时候&#xff0c;让两个日期相减。那么其中的这个now函数返回的就是当前的系统日期和时间。 1. 获取系统时间函数 now()函数&#xff0c;返回的这个日期和时间的格…

mock服务-通过json定义接口自动实现mock服务

go-mock介绍 不管在前端还是后端开发过程中&#xff0c;当我们需要联调其他服务的接口&#xff0c;而这个服务还没法提供调用时&#xff0c;那我们就要用到mock服务&#xff0c;自己按接口文档定义一个临时接口返回指定数据&#xff0c;以供本地开发联调测试。 怎么快速启动一…

sparkSQL练习

1.前期准备 &#xff08;1&#xff09;建议先把这两篇文章都看一下吧&#xff0c;然后把这个项目也搞下来 &#xff08;2&#xff09;看看这个任务 &#xff08;3&#xff09;score.txt student_id,course_code,score 108,3-105,99 105,3-105,88 107,3-105,77 105,3-245,87 1…

CSS | 实现三列布局(两边边定宽 中间自适应,自适应成比)

目录 示例1 &#xff08;中间自适应 示例2&#xff08;中间自适应 示例3&#xff08;中间自适应 示例4 &#xff08;自适应成比 示例5&#xff08;左中定宽&#xff0c;右边自适应 示例6&#xff08;中间自适应 示例7&#xff08;中间自适应 示例8&#xff08;中间定宽…

力扣 子集

回溯基础&#xff0c;一题多解&#xff0c;不同的回朔过程。 题目 求子集中&#xff0c;数组的每种元素有选与不选两种状态。因此在使用dfs与回溯时把每一个元素分别进行选与不选的情况考虑即可。可以先用dfs跳过当前元素即不选然后一直深层挖下去&#xff0c;直到挖到最深了即…