0基础跟德姆(dom)一起学AI 自然语言处理13-注意力机制介绍2

news2025/1/15 5:12:41

1 注意力机制规则

  • 它需要三个指定的输入Q(query), K(key), V(value), 然后通过计算公式得到注意力的结果, 这个结果代表query在key和value作用下的注意力表示. 当输入的Q=K=V时, 称作自注意力计算规则;当Q、K、V不相等时称为一般注意力计算规则

例子:seq2seq架构翻译应用中的Q、K、V解释

  • seq2seq模型架构包括三部分,分别是encoder(编码器)、decoder(解码器)、中间语义张量c。
  • 图中表示的是一个中文到英文的翻译:欢迎 来 北京 → welcome to BeiJing。编码器首先处理中文输入"欢迎 来 北京",通过GRU模型获得每个时间步的输出张量,最后将它们拼接成一个中间语义张量c;接着解码器将使用这个中间语义张量c以及每一个时间步的隐层张量, 逐个生成对应的翻译语言.
  • 在上述机器翻译架构中加入Attention的方式有两种:
  • 第一种tensorflow版本(传统方式),如下图所示:

上图翻译应用中的Q、K、V解释

  • 查询张量Q: 解码器每一步输出或者是当前输入的x
  • 键张量K: 编码部分每个时间步的结果组合而成
  • 值张量V:编码部分每个时间步的结果组合而成
  • 第二种Pytorch版本(改进版),如下图所示:

上图翻译应用中的Q、K、V解释

  • 查询张量Q: 解码器每一步的输出或者是当前输入的x
  • 键张量K: 解码器上一步的隐藏层输出
  • 值张量V:编码部分每个时间步输出结果组合而成
  • 两个版本对比:
  • pytorch版本的是乘型attention,tensorflow版本的是加型attention。pytorch这里直接将与上一个unit隐状态prev_hidden拼接起来✖W得到score,之后将score过softmax得到attenion_weights.
  • 解码过程如下:
  • (1)采用自回归机制,比如:输入“go”来预测“welcome”,输入“welcome”来预测"to",输入“to”来预测“Beijing”。在输入“welcome”来预测"to"解码中,可使用注意力机制
  • (2)查询张量Q:一般可以是“welcome”词嵌入层以后的结果,查询张量Q为生成谁就是谁的查询张量(比如这里为了生成“to”,则查询张量就是“to”的查询张量,请仔细体会这一点)
  • (3) 键向量K:一般可以是上一个时间步的隐藏层输出
  • (4)值向量V:一般可以是编码部分每个时间步的结果组合而成
  • (5)查询张量Q来生成“to”,去检索“to”单词和“欢迎”、“来”、“北京”三个单词的权重分布,注意力结果表示(用权重分布 乘以内容V)

1.3 常见的注意力计算规则

# 如果参数1形状是(b × n × m), 参数2形状是(b × m × p), 则输出为(b × n × p)
>>> input = torch.randn(10, 3, 4)
>>> mat2 = torch.randn(10, 4, 5)
>>> res = torch.bmm(input, mat2)
>>> res.size()
torch.Size([10, 3, 5])

2 什么是深度神经网络注意力机制

  • 注意力机制是注意力计算规则能够应用的深度学习网络的载体, 同时包括一些必要的全连接层以及相关张量处理, 使其与应用网络融为一体. 使用自注意力计算规则的注意力机制称为自注意力机制.

  • 说明: NLP领域中, 当前的注意力机制大多数应用于seq2seq架构, 即编码器和解码器模型.

  • 请思考:为什么要在深度神经网络中引入注意力机制?

    • 1、rnn等循环神经网络,随着时间步的增长,前面单词的特征会遗忘,造成对句子特征提取不充分
    • 2、rnn等循环神经网络是一个时间步一个时间步的提取序列特征,效率低下
    • 3、研究者开始思考,能不能对32个单词(序列)同时提取事物特征,而且还是并行的,所以引入注意力机制!

3 注意力机制的作用

  • 在解码器端的注意力机制: 能够根据模型目标有效的聚焦编码器的输出结果, 当其作为解码器的输入时提升效果. 改善以往编码器输出是单一定长张量, 无法存储过多信息的情况.
  • 在编码器端的注意力机制: 主要解决表征问题, 相当于特征提取过程, 得到输入的注意力表示. 一般使用自注意力(self-attention).

注意力机制在网络中实现的图形表示:

4 注意力机制实现步骤

4.1 步骤

  • 第一步: 根据注意力计算规则, 对Q,K,V进行相应的计算.
  • 第二步: 根据第一步采用的计算方法, 如果是拼接方法,则需要将Q与第二步的计算结果再进行拼接, 如果是转置点积, 一般是自注意力, Q与V相同, 则不需要进行与Q的拼接.
  • 第三步: 最后为了使整个attention机制按照指定尺寸输出, 使用线性层作用在第二步的结果上做一个线性变换, 得到最终对Q的注意力表示.

4.2 代码实现

  • 常见注意力机制的代码分析:
# 任务描述:
# 有QKV:v是内容比如32个单词,每个单词64个特征,k是32个单词的索引,q是查询张量
# 我们的任务:输入查询张量q,通过注意力机制来计算如下信息:
# 1、查询张量q的注意力权重分布:查询张量q和其他32个单词相关性(相识度)
# 2、查询张量q的结果表示:有一个普通的q升级成一个更强大q;用q和v做bmm运算
# 3 注意:查询张量q查询的目标是谁,就是谁的查询张量。
#   eg:比如查询张量q是来查询单词"我",则q就是我的查询张量

import torch
import torch.nn as nn
import torch.nn.functional as F

# MyAtt类实现思路分析
# 1 init函数 (self, query_size, key_size, value_size1, value_size2, output_size)
# 准备2个线性层 注意力权重分布self.attn 注意力结果表示按照指定维度进行输出层 self.attn_combine
# 2 forward(self, Q, K, V):
# 求查询张量q的注意力权重分布, attn_weights[1,32]
# 求查询张量q的注意力结果表示 bmm运算, attn_applied[1,1,64]
# q 与 attn_applied 融合,再按照指定维度输出 output[1,1,32]
# 返回注意力结果表示output:[1,1,32], 注意力权重分布attn_weights:[1,32]

class MyAtt(nn.Module):
    #                   32          32          32              64      32
    def __init__(self, query_size, key_size, value_size1, value_size2, output_size):
        super(MyAtt, self).__init__()
        self.query_size = query_size
        self.key_size = key_size
        self.value_size1 = value_size1
        self.value_size2 = value_size2
        self.output_size = output_size

        # 线性层1 注意力权重分布
        self.attn = nn.Linear(self.query_size + self.key_size, self.value_size1)

        # 线性层2 注意力结果表示按照指定维度输出层 self.attn_combine
        self.attn_combine = nn.Linear(self.query_size+self.value_size2, output_size)

    def forward(self, Q, K, V):
        # 1 求查询张量q的注意力权重分布, attn_weights[1,32]
        # [1,1,32],[1,1,32]--> [1,32],[1,32]->[1,64]
        # [1,64] --> [1,32]
        # tmp1 = torch.cat( (Q[0], K[0]), dim=1)
        # tmp2 = self.attn(tmp1)
        # tmp3 = F.softmax(tmp2, dim=1)
        attn_weights = F.softmax( self.attn(torch.cat( (Q[0], K[0]), dim=-1)), dim=-1)

        # 2 求查询张量q的结果表示 bmm运算, attn_applied[1,1,64]
        # [1,1,32] * [1,32,64] ---> [1,1,64]
        attn_applied =  torch.bmm(attn_weights.unsqueeze(0), V)

        # 3 q 与 attn_applied 融合,再按照指定维度输出 output[1,1,64]
        # 3-1 q与结果表示拼接 [1,32],[1,64] ---> [1,96]
        output = torch.cat((Q[0], attn_applied[0]), dim=-1)
        # 3-2 shape [1,96] ---> [1,32]
        output = self.attn_combine(output).unsqueeze(0)

        # 4 返回注意力结果表示output:[1,1,32], 注意力权重分布attn_weights:[1,32]
        return output, attn_weights
  • 调用:
if __name__ == '__main__':

    query_size = 32
    key_size = 32
    value_size1 = 32 # 32个单词
    value_size2 = 64 # 64个特征
    output_size = 32

    Q = torch.randn(1, 1, 32)
    K = torch.randn(1, 1, 32)
    V = torch.randn(1, 32, 64)
    # V = torch.randn(1, value_size1, value_size2)

    # 1 实例化注意力类 对象
    myattobj = MyAtt(query_size, key_size, value_size1, value_size2, output_size)

    # 2 把QKV数据扔给注意机制,求查询张量q的注意力结果表示、注意力权重分布
    output, attn_weights = myattobj(Q, K, V)
    print('查询张量q的注意力结果表示output--->', output.shape, output)
    print('查询张量q的注意力权重分布attn_weights--->', attn_weights.shape, attn_weights)
  • 输出效果:
查询张量q的注意力结果表示output---> torch.Size([1, 1, 32]) tensor([[[ 0.3135, -0.0539,  0.0597, -0.0046, -0.3389, -0.1238,  1.0385,
           0.8896, -0.0268, -0.0705, -0.8409,  0.6547,  0.5909, -0.6048,
           0.6303, -0.2233,  0.7678, -0.3140,  0.3635, -0.3234, -0.1053,
           0.5845,  0.1163, -0.2203, -0.0812, -0.0868,  0.0218, -0.0597,
           0.6923, -0.1848, -0.8266, -0.0614]]], grad_fn=<UnsqueezeBackward0>)
查询张量q的注意力权重分布attn_weights---> torch.Size([1, 32]) tensor([[0.0843, 0.0174, 0.0138, 0.0431, 0.0110, 0.0308, 0.0608, 0.0216, 0.0101,
         0.0406, 0.0462, 0.0111, 0.0349, 0.0065, 0.0383, 0.0526, 0.0151, 0.0193,
         0.0294, 0.0632, 0.0322, 0.0072, 0.0294, 0.0388, 0.0135, 0.0443, 0.0594,
         0.0332, 0.0117, 0.0168, 0.0293, 0.0344]], grad_fn=<SoftmaxBackward0>)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2276818.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

慧集通(DataLinkX)iPaaS集成平台-系统管理之UI库管理、流程模板

UI库管理 UI库管理分为平台级和自建两种&#xff0c;其中平台级就是慧集通平台自己内置的一些ui库所有客户均可调用&#xff0c;自建则是平台支持使用者自己根据规则自己新增对应的UI库。具体界面如下&#xff1a; 自建UI库新增界面&#xff1a; 注&#xff1a;平台级UI库不支…

通过一个算法的设计来了解栈的一些应用

目录 1.前言 2.步骤 3.代码实现 4.测试 5.运行结果 6.一些思考 7.一些应用示例 1.前言 掌握堆栈的基本原理 掌握堆栈的存储结构 掌握堆栈的进栈、出栈&#xff1b; 判断栈空的实现方法 掌握应用堆栈实现括号匹配的原理和实现方法&#xff1b; 熟悉python语言编程 熟练…

USB 驱动开发 --- Gadget 驱动框架梳理(一)

本文由 Linux 内核文档翻译与总结而来&#xff0c;个人学习笔记仅供参考。 Gadget 框架 在 USB 协议交互过程中&#xff0c;角色定义&#xff1a; the device driver is the master (or “client driver”) Linux 内核中称为 HCD(Host Controller Driver)&#xff0c;负责与 …

字符串算法篇——字里乾坤,算法织梦,解构字符串的艺术(下)

文章目录 前言第一章&#xff1a;最长公共前缀1.1 题目链接&#xff1a;https://leetcode.cn/problems/longest-common-prefix/description/1.2 题目分析&#xff1a;1.3 思路讲解&#xff1a;1.4 代码实现&#xff1a; 第二章&#xff1a;最长回文子串2.1 题目链接&#xff1a…

计算机网络 笔记 数据链路层3(局域网,广域网,网桥,交换机)

局域网: LAN:在某一区域内由多台计算机互联成的计算机组&#xff0c;使用广播信道 特点&#xff1a; 覆盖范围有限&#xff1a;通常局限在几千米范围内&#xff0c;比如一栋办公楼、一个校园或一个工厂等相对较小的地理区域。 数据传输速率高&#xff1a;一般能达到 10Mbps…

istio-proxy oom问题排查步骤

1. 查看cluster数量 cluster数量太多会导致istio-proxy占用比较大的内存&#xff0c;此时需检查是否dr资源的host设置有配置为* 2. 查看链路数据采样率 若采样率设置过高&#xff0c;在压测时需要很大的内存来维护链路数据。可以调低采样率或增大istio-proxy内存。 检查iop中…

fast-crud select下拉框 实现多选功能及下拉框数据动态获取(通过接口获取)

教程 fast-crud select示例配置需求:需求比较复杂 1. 下拉框选项需要通过后端接口获取 2. 实现多选功能 由于这个前端框架使用逻辑比较复杂我也是第一次使用,所以只记录核心问题 环境:vue3,typescript,fast-crud ,elementPlus 效果 代码 // crud.tsx文件(/.ts也行 js应…

Apache JMeter 压力测试使用说明

文章目录 一、 安装步骤步骤一 下载相关的包步骤二 安装 Jmeter步骤三 设置 Jmeter 工具语言类型为中文 二、使用工具2.1 创建测试任务步骤一 创建线程组步骤二 创建 HTTP 请求 2.2 配置 HTTP 默认参数添加 HTTP消息头管理器HTTP请求默认值 2.3 添加 查看结果监听器2.4 查看结果…

计算机网络 (40)域名系统DNS

前言 计算机网络域名系统DNS&#xff08;Domain Name System&#xff09;是互联网的基础技术之一&#xff0c;它负责将人类可读的域名转换为计算机用来通信的数字IP地址。 一、基本概念 DNS的主要目的是将域名解析或翻译为IP地址&#xff0c;使得用户可以通过简单易记的域名来访…

本地服务器Docker搭建个人云音乐平台Splayer并实现远程访问告别烦人广告

前言 大家好&#xff01;今天我要给大家分享的是如何在Ubuntu上用Docker快速搭建高颜值无广告的某抑云音乐播放器Splayer的详细流程&#xff0c;并且结合cpolar内网穿透工具实现远程访问。如果你是音乐爱好者&#xff0c;经常需要在外办公或旅行&#xff0c;这个教程绝对能让你…

黑马linux入门笔记(01)初始Linux Linux基础命令 用户和权限 实用操作

B站 黑马程序员 的视频 BV1n84y1i7td 黑马程序员新版Linux零基础快速入门到精通&#xff0c;全涵盖linux系统知识、常用软件环境部署、Shell脚本、云平台实践、大数据集群项目实战等 增强自控力 冥想慢呼吸绿色锻炼充分休息减少决策次数优先做重要的事情(早晨)融入强自控群控…

小程序组件 —— 31 事件系统 - 事件绑定和事件对象

小程序中绑定事件和网页开发中绑定事件几乎一致&#xff0c;只不过在小程序不能通过 on 的方式绑定事件&#xff0c;也没有 click 等事件&#xff0c;小程序中绑定事件使用 bind 方法&#xff0c;click 事件也需要使用 tap 事件来进行代替&#xff0c;绑定事件的方式有两种&…

UE5 使用内置组件进行网格切割

UE引擎非常强大&#xff0c;直接内置了网格切割功能并封装为蓝图节点&#xff0c;这项功能在UE4中就存在&#xff0c;并且无需使用Chaos等模块。那么就来学习下如何使用内置组件实现网格切割。 1.配置测试用StaticMesh 对于被切割的模型&#xff0c;需要配置一些参数。以UE5…

ue5 1.平A,两段连击蒙太奇。鼠标点一下,就放2段动画。2,动画混合即融合,边跑边挥剑,3,动画通知,动画到某一帧,把控制权交给蓝图。就执行蓝图节点

新建文件夹 创建一个蒙太奇MA_Melee 找到c_slow 调节一下速度 把D_slow拖上去 中间加一个片段 哎呀呀&#xff0c;写错了&#xff0c;我想写2 把这个标记拖过来&#xff0c;点击默认default 弄第二个片段 就会自己变成这个样子 把2这个标记拖到中间 鼠标左键&a…

《机器学习》之K-means聚类

目录 一、简介 二、K-means聚类实现步骤 1、初始化数据点、确定K值 2、通过距离分配数据点 3、更新簇中心 4、 迭代更新 三、聚类效果评价方式 1、轮廓系数的定义 2、整体轮廓系数 3、使用场景 4、优点 5、缺点 6、代码实现方法 四、K-means聚类代码实现 1、API接…

Wireshark抓包教程(2024最新版个人笔记)

改内容是个人的学习笔记 Wireshark抓包教程&#xff08;2024最新版&#xff09;_哔哩哔哩_bilibili 该课程笔记1-16 wireshark基础 什么是抓包工具&#xff1a;用来抓取数据包的一个软件 wireshark的功能&#xff1a;用来网络故障排查&#xff1b;用来学习网络技术 wireshark下…

Web开发(一)HTML5

Web开发&#xff08;一&#xff09;HTML5 写在前面 参考黑马程序员前端Web教程做的笔记&#xff0c;主要是想后面自己搭建网页玩。 这部分是前端HTML5CSS3移动web视频教程的HTML5部分。主要涉及到HTML的基础语法。 HTML基础 标签定义 HTML定义 HTML(HyperText Markup Lan…

RabbitMQ 的工作模式

目录 工作模式 Simple&#xff08;简单模式&#xff09; Work Queue&#xff08;工作队列&#xff09; Publish/Subscribe&#xff08;发布/订阅&#xff09; Exchange&#xff08;交换机&#xff09; Routing&#xff08;路由模式&#xff09; Topics&#xff08;通配…

备战蓝桥杯:树的存储与遍历(dfs和bfs)

树的概念 树的逻辑结构是树形结构&#xff0c;和我们之前的线性结构又不太一样了&#xff0c;是一种一对多的关系 树的结点分为根节点&#xff0c;叶子结点&#xff08;没有分支的结点&#xff09; 以及分支结点 从上往下看&#xff0c;每个结点都有0个或多个后继 从下往上…

超大规模分类(三):KNN softmax

传统的分类损失计算输入数据和每个类别中心的距离&#xff0c;来优化模型的训练。KNN softmax通过选择和输入数据最相关的top-K个类别&#xff0c;仅计算输入数据和top-K个类别中心的距离&#xff0c;以减小计算量。 KNN softmax首次诞生于达摩院机器智能技术实验室发表的SIGKD…