分布式搜索引擎之elasticsearch基本使用3

news2025/1/8 15:22:04

分布式搜索引擎之elasticsearch基本使用3

1.部署单点es

1.1.创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net

1.2.加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。

资料提供了镜像的tar包:

在这里插入图片描述

将其上传到虚拟机中,然后运行命令加载即可:

# 导入数据
docker load -i es.tar

同理还有kibana的tar包也需要这样做。

1.3.运行

运行docker命令,部署单点es:

docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

在浏览器中输入:http://192.168.150.101:9200 即可看到elasticsearch的响应结果:

在这里插入图片描述

2.部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

2.1.部署

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

在这里插入图片描述

此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果

2.2.DevTools

kibana中提供了一个DevTools界面:

在这里插入图片描述

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

3.安装IK分词器

3.1.在线安装ik插件(较慢)

# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch

3.2.离线安装ik插件(推荐)

1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[
    {
        "CreatedAt": "2022-05-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

2)解压缩分词器安装包

下面我们需要把资料中的ik分词器解压缩,重命名为ik

在这里插入图片描述

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

在这里插入图片描述

4)重启容器

# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es

5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "程序员学习java太棒了"
}

结果:

{
  "tokens" : [
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "程序",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "学习",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "ENGLISH",
      "position" : 5
    },
    {
      "token" : "太棒了",
      "start_offset" : 11,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "太棒",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 7
    },
    {
      "token" : "了",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "CN_CHAR",
      "position" : 8
    }
  ]
}

3.3 扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

在这里插入图片描述

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

传智播客
奥力给

4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f elasticsearch

在这里插入图片描述

日志中已经成功加载ext.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "Java就业超过90%,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

3.4 停用词词典

在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典-->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>

3)在 stopword.dic 添加停用词

都点赞

4)重启elasticsearch

# 重启服务
docker restart elasticsearch
docker restart kibana

# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载stopword.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "Java就业率超过95%,都点赞,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

4.部署es集群

我们会在单机上利用docker容器运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。

部署es集群可以直接使用docker-compose来完成,但这要求你的Linux虚拟机至少有4G的内存空间

4.1.创建es集群

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:
  es01:
    image: elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data02:/usr/share/elasticsearch/data
    ports:
      - 9201:9200
    networks:
      - elastic
  es03:
    image: elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic
    ports:
      - 9202:9200
volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

添加下面的内容:

vm.max_map_count=262144

然后执行命令,让配置生效:

sysctl -p

通过docker-compose启动集群:

docker-compose up -d

4.2.集群状态监控

kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。

这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro

在这里插入图片描述

解压即可使用,非常方便。

解压好的目录如下:

在这里插入图片描述

进入对应的bin目录:

在这里插入图片描述

双击其中的cerebro.bat文件即可启动服务。

在这里插入图片描述

访问http://localhost:9000 即可进入管理界面:

在这里插入图片描述

输入你的elasticsearch的任意节点的地址和端口,点击connect即可:

在这里插入图片描述

绿色的条,代表集群处于绿色(健康状态)。

4.3.创建索引库

1)利用kibana的DevTools创建索引库

在DevTools中输入指令:

PUT /itcast
{
  "settings": {
    "number_of_shards": 3, // 分片数量
    "number_of_replicas": 1 // 副本数量
  },
  "mappings": {
    "properties": {
      // mapping映射定义 ...
    }
  }
}

2)利用cerebro创建索引库

利用cerebro还可以创建索引库:

在这里插入图片描述

填写索引库信息:

在这里插入图片描述

点击右下角的create按钮:

在这里插入图片描述

4.4.查看分片效果

回到首页,即可查看索引库分片效果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2272653.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

人工智能知识分享第九天-机器学习_集成学习

集成学习 概念 集成学习是机器学习中的一种思想&#xff0c;它通过多个模型的组合形成一个精度更高的模型&#xff0c;参与组合的模型称为弱学习器&#xff08;基学习器&#xff09;。训练时&#xff0c;使用训练集依次训练出这些弱学习器&#xff0c;对未知的样本进行预测时…

在线机考|2024华为实习秋招春招编程题(最新)——第3题_个性化歌单推荐系统_300分(十一)

题目内容 假设你是音乐服务的开发者,为了提高用户体验需要解决推荐歌单的同质化问题,保证推荐给用户的所有歌单不包含相同歌曲的。给定一个包含N个歌单和M条歌单重复记录,每个歌单用一个从1到N的整数编号,歌单重复记录包含两个歌单的ID,表示两个歌单有相同的歌曲。 你的任…

学英语学压测:02jmeter组件-测试计划和线程组ramp-up参数的作用

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#xff1a;先看关键单词&#xff0c;再看英文&#xff0c;最后看中文总结&#xff0c;再回头看一遍英文原文&#xff0c;效果更佳&#xff01;&#xff01; 关键词 Functional Testing功能测试[ˈfʌŋkʃənəl ˈtɛstɪŋ]Sample样…

最新最详细的配置Node.js环境教程

配置Node.js环境 一、前言 &#xff08;一&#xff09;为什么要配置Node.js&#xff1f;&#xff08;二&#xff09;NPM生态是什么&#xff08;三&#xff09;Node和NPM的区别 二、如何配置Node.js环境 第一步、安装环境第二步、安装步骤第三步、验证安装第四步、修改全局模块…

PHP框架+gatewayworker实现在线1对1聊天--接收消息(7)

文章目录 接收消息的原理接收消息JavaScript代码 接收消息的原理 接收消息&#xff0c;就是接受服务器转发的客户端消息。并不需要单独创建函数&#xff0c;因为 ws.onmessage会自动接收消息。我们需要在这个函数里进行处理。因为初始化的时候&#xff0c;已经处理的init类型的…

当算法遇到线性代数(四):奇异值分解(SVD)

SVD分解的理论与应用 线性代数系列相关文章&#xff08;置顶&#xff09; 1.当算法遇到线性代数&#xff08;一&#xff09;&#xff1a;二次型和矩阵正定的意义 2.当算法遇到线性代数&#xff08;二&#xff09;&#xff1a;矩阵特征值的意义 3.当算法遇到线性代数&#xff0…

科研绘图系列:R语言科研绘图之标记热图(heatmap)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍加载R包数据下载导入数据数据预处理画图系统信息参考介绍 科研绘图系列:R语言科研绘图之标记热图(heatmap) 加载R包 library(tidyverse) library(ggplot2) library(reshape)…

Mysql--基础篇--SQL(DDL,DML,窗口函数,CET,视图,存储过程,触发器等)

SQL&#xff08;Structured Query Language&#xff0c;结构化查询语言&#xff09;是用于管理和操作关系型数据库的标准语言。它允许用户定义、查询、更新和管理数据库中的数据。SQL是一种声明性语言&#xff0c;用户只需要指定想要执行的操作&#xff0c;而不需要详细说明如何…

Excel重新踩坑5:二级下拉列表制作;★数据透视表;

0、在excel中函数公式不仅可以写在单元格里面&#xff0c;还可以写在公式里面。 1、二级下拉列表制作&#xff1a; 2、数据透视表&#xff1a; 概念&#xff1a;通过拖拉就能实现复杂函数才能实现的数据统计问题。 概览&#xff1a;在插入选项中有个数据透视表&#xff0c;数…

Linux-----进程处理(waitpid,进程树,孤儿进程)

目录 waitpid等待 进程树 孤儿进程 waitpid等待 Linux中父进程除了可以启动子进程&#xff0c;还要负责回收子进程的状态。如果子进程结束后父进程没有正常回收&#xff0c;那么子进程就会变成一个僵尸进程——即程序执行完成&#xff0c;但是进程没有完全结束&#xff0c;其…

解决报错net.sf.jsqlparser.statement.select.SelectBody

在我们项目集成mybatis-plus时,总会遇到奇奇怪怪的报错,比如说下面的这个报错 而这个报错,是告诉我们的分页依赖冲突,要加个jsqlparser依赖来解决这个冲突,也相当于平衡,但是可能因为我们版本的不匹配,还是会报错,例如下面这样 但是我们是不知道到底是什么依赖冲突的,这个时候就…

感知器的那些事

感知器的那些事 历史背景Rosenblatt和Minsky关于感知机的争论弗兰克罗森布拉特简介提出感知器算法Mark I感知机争议与分歧马文明斯基简介单层感知器工作原理训练过程多层感知器工作原理单层感知机 vs 多层感知机感知器模型(Perceptron),是由心理学家Frank Rosenblatt在1957年…

内核链表 例题 C语言实现

问题&#xff1a; 将下面的数据节点信息转换为链表结构&#xff0c;并遍历输出。要求根据type的值来决定val的类型。 type为1代表bool类型&#xff0c;2代表整形&#xff0c;3代表浮点型。无需解析文本&#xff0c;直接赋值形成节点即可。 代码&#xff1a; list.c #includ…

C语言结构体数组

上次我们讲解了结构体&#xff0c;这里还有高级应用就是结构体数组&#xff08;集合的集合&#xff09; &#xff08;这里提醒一句&#xff0c;想要在北京参加NCRE考试的朋友们今天开始报名了&#xff09; 定义 还是拿上回那个学生数据的结构体 typedef struct {int year;i…

深入了解 ES6 Map:用法与实践

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

在Vue3项目中使用svg-sprite-loader

1.普通的svg图片使用方式 1.1 路径引入 正常我们会把项目中的静态资源放在指定的一个目录&#xff0c;例如assets,使用起来就像 <img src"../assets/svgicons/about.svg" /> 1.2封装组件使用 显然上面的这种方法在项目开发中不太适用&#xff0c;每次都需…

谷歌SEO真的需要很长时间吗?

关键在于策略与执行力&#xff0c;很多人在刚开始做谷歌SEO时&#xff0c;都会产生一种挫败感&#xff0c;觉得排名变化太慢&#xff0c;看不到显著效果。这其实是因为SEO本身是一项需要时间的工作&#xff0c;特别是在竞争激烈的领域。但如果策略得当、执行力强&#xff0c;时…

耐高压26V输入5V升压充电8.4V芯片

HU6877作为一款集成了26V高耐压保护的5V升压至8.4V两节锂电池充电管理IC&#xff0c;凭借其高效升压、智能充电管理、多重安全保护及高耐压特性&#xff0c;在高端手电筒、便携式医疗设备、无人机等领域展现出了广泛的应用前景。本文将详细探讨HU6877的技术特点、工作原理、应用…

linuxCNC(六)配置LinuxCNC完成伺服控制

这里写目录标题 1、 cia402安装2、找伺服描述文件&#xff08;xml&#xff09;3、配置ethercat-config.xml3.1、打开hal-cia402/example/ethercat-conf.xml3.2、修改 ethercat-conf.xml文件中vid"0x000116c7" pid"0x003e0402"3.3、其他参数&#xff0c;根据…

【数据结构】链表(2):双向链表和双向循环链表

双向链表&#xff08;Doubly Linked List&#xff09; 定义&#xff1a; 每个节点包含三个部分&#xff1a; 数据域。前驱指针域&#xff08;指向前一个节点&#xff09;。后继指针域&#xff08;指向下一个节点&#xff09;。 支持从任意节点向前或向后遍历。 #define dat…