在行列可自由变换的平面上9点结构有1430个,10点结构有3908个。其中可被分解为2*5的有102个,
5a1*2a1=10a28 | 5a1*2a2=10a689 | 5a1*2a3=10a1722 |
5a2*2a1=10a172 | 5a2*2a2=10a1081 | 5a2*2a3=10a2006 |
5a3*2a1=10a275 | 5a3*2a2=10a1561 | 5a3*2a3=10a2381 |
5a4*2a1=10a1038 | 5a4*2a2=10a1858 | 5a4*2a3=10a3184 |
5a5*2a1=10a1064 | 5a5*2a2=10a2880 | 5a5*2a3=10a3272 |
5a6*2a1=10a700 | 5a6*2a2=10a2989 | 5a6*2a3=10a3354 |
5a7*2a1=10a338 | 5a7*2a2=10a2844 | 5a7*2a3=10a3130 |
5a8*2a1=10a819 | 5a8*2a2=10a2955 | 5a8*2a3=10a3251 |
5a9*2a1=10a774 | 5a9*2a2=10a3189 | 5a9*2a3=10a3543 |
5a10*2a1=10a200 | 5a10*2a2=10a2983 | 5a10*2a3=10a3271 |
5a11*2a1=10a1969 | 5a11*2a2=10a3252 | 5a11*2a3=10a3510 |
5a12*2a1=10a1231 | 5a12*2a2=10a1887 | 5a12*2a3=10a3484 |
5a13*2a1=10a1820 | 5a13*2a2=10a3473 | 5a13*2a3=10a3667 |
5a14*2a1=10a1660 | 5a14*2a2=10a3492 | 5a14*2a3=10a3674 |
5a15*2a1=10a3109 | 5a15*2a2=10a3585 | 5a15*2a3=10a3672 |
5a16*2a1=10a3497 | 5a16*2a2=10a3766 | 5a16*2a3=10a3807 |
5a17*2a1=10a3527 | 5a17*2a2=10a3770 | 5a17*2a3=10a3750 |
5a18*2a1=10a3322 | 5a18*2a2=10a3808 | 5a18*2a3=10a3859 |
5a19*2a1=10a3701 | 5a19*2a2=10a3825 | 5a19*2a3=10a3395 |
5a20*2a1=10a3735 | 5a20*2a2=10a3844 | 5a20*2a3=10a3500 |
5a21*2a1=10a2654 | 5a21*2a2=10a3576 | 5a21*2a3=10a3826 |
5a22*2a1=10a3372 | 5a22*2a2=10a3832 | 5a22*2a3=10a3785 |
5a23*2a1=10a3673 | 5a23*2a2=10a3839 | 5a23*2a3=10a3842 |
5a24*2a1=10a3341 | 5a24*2a2=10a3714 | 5a24*2a3=10a3881 |
5a25*2a1=10a3802 | 5a25*2a2=10a3855 | 5a25*2a3=10a3460 |
5a26*2a1=10a3694 | 5a26*2a2=10a3867 | 5a26*2a3=10a3871 |
5a27*2a1=10a3811 | 5a27*2a2=10a3875 | 5a27*2a3=10a3630 |
5a28*2a1=10a3823 | 5a28*2a2=10a3879 | 5a28*2a3=10a3745 |
5a29*2a1=10a3158 | 5a29*2a2=10a3687 | 5a29*2a3=10a3890 |
5a30*2a1=10a3700 | 5a30*2a2=10a3885 | 5a30*2a3=10a3893 |
5a31*2a1=10a3857 | 5a31*2a2=10a3889 | 5a31*2a3=10a3796 |
5a32*2a1=10a3781 | 5a32*2a2=10a3892 | 5a32*2a3=10a3903 |
5a33*2a1=10a3895 | 5a33*2a2=10a3905 | 5a33*2a3=10a3899 |
5a34*2a1=10a3900 | 5a34*2a2=10a3907 | 5a34*2a3=10a3908 |
5ax*2a1
5ax*2a2
5ax*2a3
10 | 8 | 6 |
3908 | 558 | 90 |
102 | 40 | 18 |
0.0261 | 0.0717 | 0.2 |
对比8点结构和6点结构,可按乘法分解的10点结构占比在不断变小。在10点结构中约有97.4%的结构都是类素数结构。 无法按乘法分解。
假设结构数量比an/a(n-1)=d是一个定值,则有
计算得到d=2.48793
有理由猜测如果一个结构只能被分解为2和一个素数n的积,则这个结构可被分解的结构占比为
对于这样的结构只要n稍大些,可被分解的结构占比就几乎为0.