模型对象(Model Object)
- 引言
- 到目前为止的完整代码:
引言
我们构建了一个可以执行前向传播、反向传播以及精度测量等辅助任务的模型。通过编写相当多的代码并在一些较大的代码块中进行修改,我们实现了这些功能。此时,将模型本身转化为一个对象的做法开始显得更有意义,特别是当我们希望保存和加载这个对象以用于未来的预测任务时。此外,我们还可以利用这个对象减少一些常见代码行,使得与当前代码库的协作更加便捷,同时也更容易构建新的模型。为了完成模型对象的转换,我们将使用我们最近工作的模型,即使用正弦数据的回归模型:
from nnfs.datasets import sine_data
X, y = sine_data()
有了数据之后,我们制作模型类的第一步就是添加我们想要的各层。因此,我们可以通过以下操作来开始我们的模型类:
# Model class
class Model:
def __init__(self):
# Create a list of network objects
self.layers = []
# Add objects to the model
def add(self, layer):
self.layers.append(layer)
这样,我们就可以使用模型对象的添加方法来添加图层。仅这一点就能大大提高可读性。让我们添加一些图层:
# Instantiate the model
model = Model()
# Add layers
model.add(Layer_Dense(1, 64))
model.add(Activation_ReLU())
model.add(Layer_Dense(64, 64))
model.add(Activation_ReLU())
model.add(Layer_Dense(64, 1))
model.add(Activation_Linear())
我们现在也可以查询这个模型:
print(model.layers)
>>>
[<__main__.Layer_Dense object at 0x000001D1EB2A2900>,
<__main__.Activation_ReLU object at 0x000001D1EB2A2180>,
<__main__.Layer_Dense object at 0x000001D1EB2A3F20>,
<__main__.Activation_ReLU object at 0x000001D1EB2B9220>,
<__main__.Layer_Dense object at 0x000001D1EB2BB800>,
<__main__.Activation_Linear object at 0x000001D1EB2BBA40>]
除了添加层,我们还想为模型设置损失函数和优化器。为此,我们将创建一个名为 set 的方法:
# Set loss and optimizer
def set(self, *, loss, optimizer):
self.loss = loss
self.optimizer = optimizer
在参数定义中使用星号(*)表示后续的参数(在本例中是loss
和optimizer
)为关键字参数。由于这些参数没有默认值,因此它们是必需的关键字参数,也就是说必须通过名称和值的形式传递,从而使代码更加易读。
现在,我们可以将一个调用此方法的语句添加到我们新创建的模型对象中,并传递loss和optimizer对象:
# Create dataset
X, y = sine_data()
# Instantiate the model
model = Model()
# Add layers
model.add(Layer_Dense(1, 64))
model.add(Activation_ReLU())
model.add(Layer_Dense(64, 64))
model.add(Activation_ReLU())
model.add(Layer_Dense(64, 1))
model.add(Activation_Linear())
# Set loss and optimizer objects
model.set(
loss=Loss_MeanSquaredError(),
optimizer=Optimizer_Adam(learning_rate=0.005, decay=1e-3),
)
设置好模型的层、损失函数和优化器后,下一步就是训练了,因此我们要添加一个 train
方法。现在,我们先将其作为一个占位符,不久后再进行填充:
# Train the model
def train(self, X, y, *, epochs=1, print_every=1):
# Main training loop
for epoch in range(1, epochs+1):
# Temporary
pass
然后,我们可以在模型定义中添加对 train 方法的调用。我们将传递训练数据、epochs 的数量(10000,我们目前使用的是),以及打印训练摘要的频率。我们不需要或不希望每一步都打印,因此我们将对其进行配置:
# Create dataset
X, y = sine_data()
# Instantiate the model
model = Model()
# Add layers
model.add(Layer_Dense(1, 64))
model.add(Activation_ReLU())
model.add(Layer_Dense(64, 64))
model.add(Activation_ReLU())
model.add(Layer_Dense(64, 1))
model.add(Activation_Linear())
# Set loss and optimizer objects
model.set(
loss=Loss_MeanSquaredError(),
optimizer=Optimizer_Adam(learning_rate=0.005, decay=1e-3),
)
model.train(X, y, epochs=10000, print_every=100)
要进行训练,我们需要执行前向传播。在对象中执行前向传播稍微复杂一些,因为我们需要在层的循环中完成此操作,并且需要知道前一层的输出以正确地传递数据。查询前一层的一个问题是,第一层没有“前一层”。我们定义的第一层是第一隐含层。因此,我们的一个选择是创建一个“输入层”。这被认为是神经网络中的一层,但没有与之相关的权重和偏置。输入层仅包含训练数据,我们仅在循环迭代层时将其用作第一层的“前一层”。我们将创建一个新类,并像调用Layer_Dense
类一样调用它,称为Layer_Input
:
# Input "layer"
class Layer_Input:
# Forward pass
def forward(self, inputs):
self.output = inputs
forward
方法将训练样本设置为self.output
。这一属性与其他层是通用的。这里没有必要实现反向传播方法,因为我们永远不会用到它。现在可能看起来创建这个类有点多余,但希望很快你就会明白我们将如何使用它。接下来,我们要为模型的每一层设置前一层和后一层的属性。我们将在Model
类中创建一个名为finalize
的方法:
# Finalize the model
def finalize(self):
# Create and set the input layer
self.input_layer = Layer_Input()
# Count all the objects
layer_count = len(self.layers)
# Iterate the objects
for i in range(layer_count):
# If it's the first layer,
# the previous layer object is the input layer
if i == 0:
self.layers[i].prev = self.input_layer
self.layers[i].next = self.layers[i+1]
# All layers except for the first and the last
elif i < layer_count - 1:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.layers[i+1]
# The last layer - the next object is the loss
else:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.loss
这段代码创建了一个输入层,并为模型对象的self.layers
列表中的每一层设置了next
和prev
引用。我们创建了Layer_Input
类,以便在循环中为第一隐藏层设置prev
属性,因为我们将以统一的方式调用所有层。对于最后一层,其next
层将是我们已经创建的损失函数。
现在,我们已经为模型对象执行前向传播所需的层信息准备就绪,让我们添加一个forward
方法。我们将同时在训练时和之后仅进行预测(也称为模型推理)时使用这个forward
方法。以下是在Model
类中继续添加的代码:
# Forward pass
class Model:
...
# Performs forward pass
def forward(self, X):
# Call forward method on the input layer
# this will set the output property that
# the first layer in "prev" object is expecting
self.input_layer.forward(X)
# Call forward method of every object in a chain
# Pass output of the previous object as a parameter
for layer in self.layers:
layer.forward(layer.prev.output)
# "layer" is now the last object from the list,
# return its output
return layer.output
在这种情况下,我们传入输入数据
X
X
X,然后简单地通过 Model
对象中的 input_layer
处理该数据,这会在该对象中创建一个 output
属性。从这里开始,我们迭代 self.layers
中的层,这些层从第一个隐藏层开始。对于每一层,我们对上一层的输出数据 layer.prev.output
执行前向传播。对于第一个隐藏层,layer.prev
是 self.input_layer
。调用每一层的 forward
方法时会创建该层的 output
属性,然后该属性会作为输入传递到下一层的 forward
方法调用中。一旦我们遍历了所有层,就会返回最后一层的输出。
这就是一次前向传播。现在,让我们将这个前向传播方法调用添加到 Model
类的 train
方法中:
# Forward pass
class Model:
...
# Train the model
def train(self, X, y, *, epochs=1, print_every=1):
# Main training loop
for epoch in range(1, epochs+1):
# Perform the forward pass
output = self.forward(X)
# Temporary
print(output)
sys.exit()
到目前为止的完整Model
类:
# Model class
class Model:
def __init__(self):
# Create a list of network objects
self.layers = []
# Add objects to the model
def add(self, layer):
self.layers.append(layer)
# Set loss and optimizer
def set(self, *, loss, optimizer):
self.loss = loss
self.optimizer = optimizer
# Train the model
def train(self, X, y, *, epochs=1, print_every=1):
# Main training loop
for epoch in range(1, epochs+1):
# Perform the forward pass
output = self.forward(X)
# Temporary
print(output)
sys.exit()
# Finalize the model
def finalize(self):
# Create and set the input layer
self.input_layer = Layer_Input()
# Count all the objects
layer_count = len(self.layers)
# Iterate the objects
for i in range(layer_count):
# If it's the first layer,
# the previous layer object is the input layer
if i == 0:
self.layers[i].prev = self.input_layer
self.layers[i].next = self.layers[i+1]
# All layers except for the first and the last
elif i < layer_count - 1:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.layers[i+1]
# The last layer - the next object is the loss
else:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.loss
# Performs forward pass
def forward(self, X):
# Call forward method on the input layer
# this will set the output property that
# the first layer in "prev" object is expecting
self.input_layer.forward(X)
# Call forward method of every object in a chain
# Pass output of the previous object as a parameter
for layer in self.layers:
layer.forward(layer.prev.output)
# "layer" is now the last object from the list,
# return its output
return layer.output
最后,我们可以在主代码中添加 finalize
方法调用(请记住,除其他事项外,该方法还能让模型的图层知道它们的上一层和下一层)。
# Create dataset
X, y = sine_data()
# Instantiate the model
model = Model()
# Add layers
model.add(Layer_Dense(1, 64))
model.add(Activation_ReLU())
model.add(Layer_Dense(64, 64))
model.add(Activation_ReLU())
model.add(Layer_Dense(64, 1))
model.add(Activation_Linear())
# Set loss and optimizer objects
model.set(
loss=Loss_MeanSquaredError(),
optimizer=Optimizer_Adam(learning_rate=0.005, decay=1e-3),
)
# Finalize the model
model.finalize()
model.train(X, y, epochs=10000, print_every=100)
>>>
[[ 0.00000000e+00]
[-1.13209149e-08]
[-2.26418297e-08]
...
[-1.12869511e-05]
[-1.12982725e-05]
[-1.13095930e-05]]
此时,我们已经在Model
类中覆盖了模型的前向传播。我们仍需要计算损失和准确率,并进行反向传播。在此之前,我们需要知道哪些层是“可训练的”,也就是说这些层具有我们可以调整的权重和偏置。为此,我们需要检查层是否有weights
或biases
属性。我们可以通过以下代码进行检查:
# 如果层包含一个名为“weights”的属性,
# 那么它是一个可训练层 -
# 将其添加到可训练层列表中
# 我们不需要检查偏置 -
# 检查权重已经足够了
if hasattr(self.layers[i], 'weights'):
self.trainable_layers.append(self.layers[i])
其中,
i
i
i 是层列表中某一层的索引。我们将把这段代码添加到 finalize
方法中。以下是目前该方法的完整代码:
# Finalize the model
def finalize(self):
# Create and set the input layer
self.input_layer = Layer_Input()
# Count all the objects
layer_count = len(self.layers)
# Initialize a list containing trainable layers:
self.trainable_layers = []
# Iterate the objects
for i in range(layer_count):
# If it's the first layer,
# the previous layer object is the input layer
if i == 0:
self.layers[i].prev = self.input_layer
self.layers[i].next = self.layers[i+1]
# All layers except for the first and the last
elif i < layer_count - 1:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.layers[i+1]
# The last layer - the next object is the loss
# Also let's save aside the reference to the last object
# whose output is the model's output
else:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.loss
self.output_layer_activation = self.layers[i]
# 如果层包含一个名为“weights”的属性,
# 那么它是一个可训练层 -
# 将其添加到可训练层列表中
# 我们不需要检查偏置 -
# 检查权重已经足够了
if hasattr(self.layers[i], 'weights'):
self.trainable_layers.append(self.layers[i])
接下来,我们将修改普通 Loss
类,使其包含以下内容:
# Common loss class
class Loss:
...
# Calculates the data and regularization losses
# given model output and ground truth values
def calculate(self, output, y):
# Calculate sample losses
sample_losses = self.forward(output, y)
# Calculate mean loss
data_loss = np.mean(sample_losses)
# Return the data and regularization losses
return data_loss, self.regularization_loss()
# Set/remember trainable layers
def remember_trainable_layers(self, trainable_layers):
self.trainable_layers = trainable_layers
commonLoss
类中的 remember_trainable_layers
方法“告知”损失对象哪些是 Model
对象中的可训练层。在单次调用期间,calculate
方法已被修改为还会返回 self.regularization_loss()
的值。regularization_loss
方法目前需要一个层对象,但随着在 remember_trainable_layers
方法中设置了 self.trainable_layers
属性,我们现在可以迭代所有可训练层,以计算整个模型的正则化损失,而不是每次仅针对一个层进行计算:
# Common loss class
class Loss:
...
# Regularization loss calculation
def regularization_loss(self):
# 0 by default
regularization_loss = 0
# Calculate regularization loss
# iterate all trainable layers
for layer in self.trainable_layers:
# L1 regularization - weights
# calculate only when factor greater than 0
if layer.weight_regularizer_l1 > 0:
regularization_loss += layer.weight_regularizer_l1 * np.sum(np.abs(layer.weights))
# L2 regularization - weights
if layer.weight_regularizer_l2 > 0:
regularization_loss += layer.weight_regularizer_l2 * np.sum(layer.weights * layer.weights)
# L1 regularization - biases
# calculate only when factor greater than 0
if layer.bias_regularizer_l1 > 0:
regularization_loss += layer.bias_regularizer_l1 * np.sum(np.abs(layer.biases))
# L2 regularization - biases
if layer.bias_regularizer_l2 > 0:
regularization_loss += layer.bias_regularizer_l2 * np.sum(layer.biases * layer.biases)
return regularization_loss
为了计算准确率,我们需要预测结果。目前,根据模型的类型,预测需要不同的代码。例如,对于 softmax
分类器,我们使用 np.argmax()
,但对于回归,由于输出层使用线性激活函数,预测结果直接为输出值。理想情况下,我们需要一个预测方法,该方法能够为我们的模型选择合适的预测方式。为此,我们将在每个激活函数类中添加一个 predictions
方法:
# Softmax activation
class Activation_Softmax:
...
# Calculate predictions for outputs
def predictions(self, outputs):
return np.argmax(outputs, axis=1)
# Sigmoid activation
class Activation_Sigmoid:
...
# Calculate predictions for outputs
def predictions(self, outputs):
return (outputs > 0.5) * 1
# Linear activation
class Activation_Linear:
...
# Calculate predictions for outputs
def predictions(self, outputs):
return outputs
在 predictions
函数内部进行的所有计算与之前章节中针对适当模型所执行的计算相同。尽管我们没有计划将 ReLU 激活函数用于输出层的激活函数,但我们为了完整性仍会在此处包含它:
# ReLU activation
class Activation_ReLU:
...
# Calculate predictions for outputs
def predictions(self, outputs):
return outputs
我们仍然需要在 Model
对象中为最终层的激活函数设置一个引用。之后我们可以调用 predictions
方法,该方法将根据输出计算并返回预测值。我们将在 Model
类的 finalize
方法中设置这一引用。
# Model class
class Model:
...
# Finalize the model
def finalize(self):
...
# The last layer - the next object is the loss
# Also let's save aside the reference to the last object
# whose output is the model's output
else:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.loss
self.output_layer_activation = self.layers[i]
就像不同的预测方法一样,我们也需要以不同的方式计算准确率。我们将以类似于特定损失类对象实现的方式来实现这一功能——创建特定的准确率类及其对象,并将它们与模型关联。
首先,我们会编写一个通用的 Accuracy
类,该类目前只包含一个方法 calculate
,用于返回根据比较结果计算的准确率。我们已经在代码中添加了对 self.compare
方法的调用,但这个方法目前还不存在。我们将在继承自 Accuracy
类的其他类中创建该方法。现在只需要知道这个方法会返回一个由 True
和 False
值组成的列表,指示预测是否与真实值匹配。接下来,我们计算这些值的平均值(True
被视为1,False
被视为0),并将其作为准确率返回。代码如下:
# Common accuracy class
class Accuracy:
# Calculates an accuracy
# given predictions and ground truth values
def calculate(self, predictions, y):
# Get comparison results
comparisons = self.compare(predictions, y)
# Calculate an accuracy
accuracy = np.mean(comparisons)
# Return accuracy
return accuracy
接下来,我们可以使用这个通用的 Accuracy
类,通过继承它并进一步构建针对特定类型模型的功能。通常情况下,每个这些类都会包含两个方法:init
(不要与 Python 类的 __init__
方法混淆)用于从模型对象内部进行初始化,以及 compare
用于执行比较计算。
对于回归模型,init
方法将计算准确率的精度(与我们之前为回归模型编写并在训练循环之前运行的内容相同)。compare
方法将包含我们在训练循环中实际实现的比较代码,使用 self.precision
。需要注意的是,初始化时不会重新计算精度,除非通过将 reinit
参数设置为 True
强制重新计算。这种设计允许多种用例,包括独立设置 self.precision
、在需要时调用 init
(例如,在模型创建过程中从外部调用),甚至多次调用 init
(这将在后续某些情况下非常有用):
# Accuracy calculation for regression model
class Accuracy_Regression(Accuracy):
def __init__(self):
# Create precision property
self.precision = None
# Calculates precision value
# based on passed in ground truth
def init(self, y, reinit=False):
if self.precision is None or reinit:
self.precision = np.std(y) / 250
# Compares predictions to the ground truth values
def compare(self, predictions, y):
return np.absolute(predictions - y) < self.precision
然后,我们可以通过在 Model
类的 set
方法中,以与当前设置损失函数和优化器相同的方式设置准确率对象。
# Model class
class Model:
...
# Set loss, optimizer and accuracy
def set(self, *, loss, optimizer, accuracy):
self.loss = loss
self.optimizer = optimizer
self.accuracy = accuracy
然后,我们可以在完成前向传播代码之后,将损失和准确率的计算添加到模型中。需要注意的是,我们还在 train
方法的开头通过 self.accuracy.init(y)
初始化准确率,并且可以多次调用,如之前提到的那样。在回归准确率的情况下,这将在第一次调用时进行一次精度计算。以下是实现了损失和准确率计算的 train
方法代码:
# Model class
class Model:
...
# Train the model
def train(self, X, y, *, epochs=1, print_every=1):
# Initialize accuracy object
self.accuracy.init(y)
# Main training loop
for epoch in range(1, epochs+1):
# Perform the forward pass
output = self.forward(X)
# Calculate loss
data_loss, regularization_loss = self.loss.calculate(output, y)
loss = data_loss + regularization_loss
# Get predictions and calculate an accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, y)
最后,我们将在 finalize
方法中通过调用先前创建的 remember_trainable_layers
方法并传入 Loss
类的对象来实现(self.loss.remember_trainable_layers(self.trainable_layers)
)。以下是目前为止的完整模型类代码:
# Model class
class Model:
def __init__(self):
# Create a list of network objects
self.layers = []
# Add objects to the model
def add(self, layer):
self.layers.append(layer)
# Set loss, optimizer and accuracy
def set(self, *, loss, optimizer, accuracy):
self.loss = loss
self.optimizer = optimizer
self.accuracy = accuracy
# Finalize the model
def finalize(self):
# Create and set the input layer
self.input_layer = Layer_Input()
# Count all the objects
layer_count = len(self.layers)
# Initialize a list containing trainable layers:
self.trainable_layers = []
# Iterate the objects
for i in range(layer_count):
# If it's the first layer,
# the previous layer object is the input layer
if i == 0:
self.layers[i].prev = self.input_layer
self.layers[i].next = self.layers[i+1]
# All layers except for the first and the last
elif i < layer_count - 1:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.layers[i+1]
# The last layer - the next object is the loss
# Also let's save aside the reference to the last object
# whose output is the model's output
else:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.loss
self.output_layer_activation = self.layers[i]
# 如果层包含一个名为“weights”的属性,
# 那么它是一个可训练层 -
# 将其添加到可训练层列表中
# 我们不需要检查偏置 -
# 检查权重已经足够了
if hasattr(self.layers[i], 'weights'):
self.trainable_layers.append(self.layers[i])
# Update loss object with trainable layers
self.loss.remember_trainable_layers(self.trainable_layers)
# Train the model
def train(self, X, y, *, epochs=1, print_every=1):
# Initialize accuracy object
self.accuracy.init(y)
# Main training loop
for epoch in range(1, epochs+1):
# Perform the forward pass
output = self.forward(X)
# Calculate loss
data_loss, regularization_loss = self.loss.calculate(output, y)
loss = data_loss + regularization_loss
# Get predictions and calculate an accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, y)
# Performs forward pass
def forward(self, X):
# Call forward method on the input layer
# this will set the output property that
# the first layer in "prev" object is expecting
self.input_layer.forward(X)
# Call forward method of every object in a chain
# Pass output of the previous object as a parameter
for layer in self.layers:
layer.forward(layer.prev.output)
# "layer" is now the last object from the list,
# return its output
return layer.output
Loss
类的全部代码:
# Common loss class
class Loss:
# Regularization loss calculation
def regularization_loss(self):
# 0 by default
regularization_loss = 0
# Calculate regularization loss
# iterate all trainable layers
for layer in self.trainable_layers:
# L1 regularization - weights
# calculate only when factor greater than 0
if layer.weight_regularizer_l1 > 0:
regularization_loss += layer.weight_regularizer_l1 * np.sum(np.abs(layer.weights))
# L2 regularization - weights
if layer.weight_regularizer_l2 > 0:
regularization_loss += layer.weight_regularizer_l2 * np.sum(layer.weights * layer.weights)
# L1 regularization - biases
# calculate only when factor greater than 0
if layer.bias_regularizer_l1 > 0:
regularization_loss += layer.bias_regularizer_l1 * np.sum(np.abs(layer.biases))
# L2 regularization - biases
if layer.bias_regularizer_l2 > 0:
regularization_loss += layer.bias_regularizer_l2 * np.sum(layer.biases * layer.biases)
return regularization_loss
# Set/remember trainable layers
def remember_trainable_layers(self, trainable_layers):
self.trainable_layers = trainable_layers
# Calculates the data and regularization losses
# given model output and ground truth values
def calculate(self, output, y):
# Calculate sample losses
sample_losses = self.forward(output, y)
# Calculate mean loss
data_loss = np.mean(sample_losses)
# Return the data and regularization losses
return data_loss, self.regularization_loss()
现在我们已经完成了完整的前向传播并计算了损失和准确率,接下来可以开始反向传播。在 Model
类中的 backward
方法在结构上与 forward
方法类似,只是顺序相反并使用不同的参数。按照之前训练方法中的反向传播,我们需要调用损失对象的 backward
方法来创建 dinputs
属性。接着,我们将按照相反的顺序遍历所有层,调用它们的 backward
方法,并将下一层(正常顺序中的下一层)的 dinputs
属性作为参数传入,从而有效地反向传播由该下一层返回的梯度。请记住,我们已经将损失对象设置为最后一层(输出层)的下一层。
# Model class
class Model:
...
# Performs backward pass
def backward(self, output, y):
# First call backward method on the loss
# this will set dinputs property that the last
# layer will try to access shortly
self.loss.backward(output, y)
# Call backward method going through all the objects
# in reversed order passing dinputs as a parameter
for layer in reversed(self.layers):
layer.backward(layer.next.dinputs)
接下来,我们将在 train
方法的末尾调用该 backward
方法:
# Perform backward pass
self.backward(output, y)
在完成反向传播之后,最后一个操作是进行优化。之前,我们针对每一个可训练的层多次调用优化器对象的 update_params
方法。现在,我们需要通过遍历可训练层的列表并在循环中调用 update_params()
方法,使这段代码更加通用:
# Optimize (update parameters)
self.optimizer.pre_update_params()
for layer in self.trainable_layers:
self.optimizer.update_params(layer)
self.optimizer.post_update_params()
然后我们可以输出有用的信息——此时,train
方法的最后一个参数就派上了用场:
# Print a summary
if not epoch % print_every:
print(f'epoch: {epoch}, ' +
f'acc: {accuracy:.3f}, ' +
f'loss: {loss:.3f} (' +
f'data_loss: {data_loss:.3f}, ' +
f'reg_loss: {regularization_loss:.3f}), ' +
f'lr: {self.optimizer.current_learning_rate}')
# Model class
class Model:
...
# Train the model
def train(self, X, y, *, epochs=1, print_every=1):
# Initialize accuracy object
self.accuracy.init(y)
# Main training loop
for epoch in range(1, epochs+1):
# Perform the forward pass
output = self.forward(X)
# Calculate loss
data_loss, regularization_loss = self.loss.calculate(output, y)
loss = data_loss + regularization_loss
# Get predictions and calculate an accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, y)
# Perform backward pass
self.backward(output, y)
# Optimize (update parameters)
self.optimizer.pre_update_params()
for layer in self.trainable_layers:
self.optimizer.update_params(layer)
self.optimizer.post_update_params()
# Print a summary
if not epoch % print_every:
print(f'epoch: {epoch}, ' +
f'acc: {accuracy:.3f}, ' +
f'loss: {loss:.3f} (' +
f'data_loss: {data_loss:.3f}, ' +
f'reg_loss: {regularization_loss:.3f}), ' +
f'lr: {self.optimizer.current_learning_rate}')
现在,我们可以将精度类对象传入模型,并测试模型的性能:
>>>
epoch: 100, acc: 0.006, loss: 0.085 (data_loss: 0.085, reg_loss: 0.000), lr: 0.004549590536851684
epoch: 200, acc: 0.032, loss: 0.035 (data_loss: 0.035, reg_loss: 0.000), lr: 0.004170141784820684
...
epoch: 9900, acc: 0.934, loss: 0.000 (data_loss: 0.000, reg_loss: 0.000), lr: 0.00045875768419121016
epoch: 10000, acc: 0.970, loss: 0.000 (data_loss: 0.000, reg_loss: 0.000), lr: 0.00045458678061641964
我们的新模型表现良好,现在我们能够通过 Model
类更轻松地创建新模型。我们需要继续修改这些类,以支持全新的模型。例如,我们尚未处理二元逻辑回归。为此,我们需要添加两点内容。首先,我们需要计算分类准确率:
# Accuracy calculation for classification model
class Accuracy_Categorical(Accuracy):
# No initialization is needed
def init(self, y):
pass
# Compares predictions to the ground truth values
def compare(self, predictions, y):
if len(y.shape) == 2:
y = np.argmax(y, axis=1)
return predictions == y
这与分类的准确率计算相同,只是将其封装到一个类中,并增加了一个切换参数。当该类与二元交叉熵模型一起使用时,这个切换参数会禁用将独热编码转换为稀疏标签的操作,因为该模型始终需要真实值是一个二维数组,并且它们未进行独热编码。需要注意的是,这里并未执行任何初始化,但该方法需要存在,因为它将在 Model
类的 train
方法中调用。接下来,我们需要添加的是使用验证数据对模型进行验证的能力。验证只需要执行前向传播并计算损失(仅数据损失)。我们将修改 Loss
类的 calculate
方法,以使其也能够计算验证损失:
# Common loss class
class Loss:
...
# Calculates the data and regularization losses
# given model output and ground truth values
def calculate(self, output, y, *, include_regularization=False):
# Calculate sample losses
sample_losses = self.forward(output, y)
# Calculate mean loss
data_loss = np.mean(sample_losses)
# If just data loss - return it
if not include_regularization:
return data_loss
# Return the data and regularization losses
return data_loss, self.regularization_loss()
我们新增了一个参数和条件,以仅返回数据损失,因为在这种情况下不会使用正则化损失。为了运行它,我们将以与训练数据相同的方式传递预测值和目标值。默认情况下,我们不会返回正则化损失,这意味着我们需要更新 train
方法中对该方法的调用,以在训练期间包含正则化损失:
# Calculate loss
data_loss, regularization_loss = self.loss.calculate(output, y, include_regularization=True)
然后我们可以将验证代码添加到 Model
类中的 train
方法中。我们向函数添加了 validation_data
参数,该参数接受一个包含验证数据(样本和目标)的元组;添加了一个 if
语句检查是否存在验证数据;如果存在,则执行代码对这些数据进行前向传播,按照与训练期间相同的方式计算损失和准确率,并打印结果:
# Model class
class Model:
...
# Train the model
def train(self, X, y, *, epochs=1, print_every=1, validation_data=None):
...
# If there is the validation data
if validation_data is not None:
# For better readability
X_val, y_val = validation_data
# Perform the forward pass
output = self.forward(X_val)
# Calculate the loss
loss = self.loss.calculate(output, y_val)
# Get predictions and calculate an accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, y_val)
# Print a summary
print(f'validation, ' +
f'acc: {accuracy:.3f}, ' +
f'loss: {loss:.3f}')
现在我们可以通过以下代码创建测试数据并测试二元逻辑回归模型:
# Create train and test dataset
X, y = spiral_data(samples=100, classes=2)
X_test, y_test = spiral_data(samples=100, classes=2)
# Reshape labels to be a list of lists
# Inner list contains one output (either 0 or 1)
# per each output neuron, 1 in this case
y = y.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
# Instantiate the model
model = Model()
# Add layers
model.add(Layer_Dense(2, 64, weight_regularizer_l2=5e-4, bias_regularizer_l2=5e-4))
model.add(Activation_ReLU())
model.add(Layer_Dense(64, 1))
model.add(Activation_Sigmoid())
# Set loss, optimizer and accuracy objects
model.set(
loss=Loss_BinaryCrossentropy(),
optimizer=Optimizer_Adam(decay=5e-7),
accuracy=Accuracy_Categorical()
)
# Finalize the model
model.finalize()
# Train the model
model.train(X, y, validation_data=(X_test, y_test), epochs=10000, print_every=100)
>>>
epoch: 100, acc: 0.625, loss: 0.675 (data_loss: 0.674, reg_loss: 0.001), lr: 0.0009999505024501287
epoch: 200, acc: 0.630, loss: 0.669 (data_loss: 0.668, reg_loss: 0.001), lr: 0.0009999005098992651
...
epoch: 9900, acc: 0.905, loss: 0.312 (data_loss: 0.276, reg_loss: 0.037), lr: 0.0009950748768967994
epoch: 10000, acc: 0.905, loss: 0.312 (data_loss: 0.275, reg_loss: 0.036), lr: 0.0009950253706593885
validation, acc: 0.775, loss: 0.423
现在,我们已经简化了前向传播和反向传播代码,包括验证过程,这是重新引入Dropout的好时机。回顾一下,Dropout是一种通过禁用或过滤掉某些神经元来正则化和提高模型泛化能力的方法。如果在我们的模型中使用Dropout,那么在进行验证和推理(预测)时,我们需要确保不使用Dropout。在之前的代码中,通过在验证过程中不调用Dropout的前向传播方法实现了这一点。这里,我们有一个通用方法,用于同时执行训练和验证的前向传播,因此需要一种不同的方法来关闭Dropout——即在训练过程中通知各层,并让它们“决定”是否包括计算。我们要做的第一件事是为所有层和激活函数类的前向传播方法添加一个布尔参数training
,因为我们需要以统一的方式调用它们:
# Forward pass
def forward(self, inputs, training):
当我们不处于训练模式时,可以在Layer_Dropout
类中将输出直接设置为输入,并在不改变输出的情况下从方法中返回:
# If not in the training mode - return values
if not training:
self.output = inputs.copy()
return
我们在培训时,会让dropout
参与进来:
# Dropout
class Layer_Dropout:
...
# Forward pass
def forward(self, inputs, training):
# Save input values
self.inputs = inputs
# If not in the training mode - return values
if not training:
self.output = inputs.copy()
return
# Generate and save scaled mask
self.binary_mask = np.random.binomial(1, self.rate, size=inputs.shape) / self.rate
# Apply mask to output values
self.output = inputs * self.binary_mask
接下来,我们修改Model
类的forward
方法,添加training
参数,并调用各层的forward
方法以传递该参数的值:
# Model class
class Model:
...
# Performs forward pass
def forward(self, X, training):
# Call forward method on the input layer
# this will set the output property that
# the first layer in "prev" object is expecting
self.input_layer.forward(X, training)
# Call forward method of every object in a chain
# Pass output of the previous object as a parameter
for layer in self.layers:
layer.forward(layer.prev.output, training)
# "layer" is now the last object from the list,
# return its output
return layer.output
我们还需要更新Model
类中的train
方法,因为在调用forward
方法时,training
参数需要被设置为True
:
# Perform the forward pass
output = self.forward(X, training=True)
然后在验证过程中将其设置为False
:
# Perform the forward pass
output = self.forward(X_val, training=False)
# Model class
class Model:
...
# Train the model
def train(self, X, y, *, epochs=1, print_every=1, validation_data=None):
# Initialize accuracy object
self.accuracy.init(y)
# Main training loop
for epoch in range(1, epochs+1):
# Perform the forward pass
output = self.forward(X, training=True)
# Calculate loss
data_loss, regularization_loss = self.loss.calculate(output, y, include_regularization=True)
loss = data_loss + regularization_loss
# Get predictions and calculate an accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, y)
# Perform backward pass
self.backward(output, y)
# Optimize (update parameters)
self.optimizer.pre_update_params()
for layer in self.trainable_layers:
self.optimizer.update_params(layer)
self.optimizer.post_update_params()
# Print a summary
if not epoch % print_every:
print(f'epoch: {epoch}, ' +
f'acc: {accuracy:.3f}, ' +
f'loss: {loss:.3f} (' +
f'data_loss: {data_loss:.3f}, ' +
f'reg_loss: {regularization_loss:.3f}), ' +
f'lr: {self.optimizer.current_learning_rate}')
# If there is the validation data
if validation_data is not None:
# For better readability
X_val, y_val = validation_data
# Perform the forward pass
output = self.forward(X_val, training=False)
# Calculate the loss
loss = self.loss.calculate(output, y_val)
# Get predictions and calculate an accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, y_val)
# Print a summary
print(f'validation, ' +
f'acc: {accuracy:.3f}, ' +
f'loss: {loss:.3f}')
最后,我们需要处理Model
类中结合了Softmax
激活和CrossEntropy
损失的类。这里的挑战在于,之前我们是为每个模型单独手动定义前向传播和后向传播的。然而,现在我们在计算的两个方向上都有循环,对输出和梯度的计算有统一的方式,以及其他改进。我们不能简单地移除Softmax
激活和Categorical Cross-Entropy
损失并用一个结合了两者的对象替代它们。按照目前的代码,这种方式是行不通的,因为我们以特定的方式处理输出激活函数和损失函数。
由于结合对象仅优化了后向传播的部分,我们决定让前向传播保持不变,仍然使用单独的Softmax
激活和Categorical Cross-Entropy
损失对象,只处理后向传播部分。
首先,我们需要自动确定当前模型是否是一个分类器,以及它是否使用了Softmax
激活和Categorical Cross-Entropy
损失。这可以通过检查最后一层对象的类名(这是一个激活函数对象)以及损失函数对象的类名来实现。我们将在finalize
方法的末尾添加此检查:
# If output activation is Softmax and
# loss function is Categorical Cross-Entropy
# create an object of combined activation
# and loss function containing
# faster gradient calculation
if isinstance(self.layers[-1], Activation_Softmax) and isinstance(self.loss, Loss_CategoricalCrossentropy):
# Create an object of combined activation
# and loss functions
self.softmax_classifier_output = Activation_Softmax_Loss_CategoricalCrossentropy()
为了进行此检查,我们使用了 Python 的isinstance
函数。如果给定对象是指定类的实例,isinstance
函数将返回True
。如果两个检查都返回True
,我们将设置一个新属性,该属性包含Activation_Softmax_Loss_CategoricalCrossentropy
类的对象。
我们还需要在Model
类的构造函数中,将此属性初始化为None
值:
# Softmax classifier's output object
self.softmax_classifier_output = None
最后一步是在反向传播期间检查这个对象是否已设置,如果已设置则使用它。为此,我们需要稍微修改当前的反向传播代码以单独处理这种情况。
首先,我们调用组合对象的backward
方法;然后,由于我们不会调用激活函数对象(即层列表中的最后一个对象)的backward
方法,因此需要用在激活/损失对象中计算出的梯度来设置该对象的dinputs
属性。最后,我们可以对除最后一层以外的所有层进行迭代并执行它们的反向传播操作:
# If softmax classifier
if self.softmax_classifier_output is not None:
# First call backward method
# on the combined activation/loss
# this will set dinputs property
self.softmax_classifier_output.backward(output, y)
# Since we'll not call backward method of the last layer
# which is Softmax activation
# as we used combined activation/loss
# object, let's set dinputs in this object
self.layers[-1].dinputs = self.softmax_classifier_output.dinputs
# Call backward method going through
# all the objects but last
# in reversed order passing dinputs as a parameter
for layer in reversed(self.layers[:-1]):
layer.backward(layer.next.dinputs)
return
到目前为止的完整模型类代码如下:
# Model class
class Model:
def __init__(self):
# Create a list of network objects
self.layers = []
# Softmax classifier's output object
self.softmax_classifier_output = None
# Add objects to the model
def add(self, layer):
self.layers.append(layer)
# Set loss, optimizer and accuracy
def set(self, *, loss, optimizer, accuracy):
self.loss = loss
self.optimizer = optimizer
self.accuracy = accuracy
# Finalize the model
def finalize(self):
# Create and set the input layer
self.input_layer = Layer_Input()
# Count all the objects
layer_count = len(self.layers)
# Initialize a list containing trainable layers:
self.trainable_layers = []
# Iterate the objects
for i in range(layer_count):
# If it's the first layer,
# the previous layer object is the input layer
if i == 0:
self.layers[i].prev = self.input_layer
self.layers[i].next = self.layers[i+1]
# All layers except for the first and the last
elif i < layer_count - 1:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.layers[i+1]
# The last layer - the next object is the loss
# Also let's save aside the reference to the last object
# whose output is the model's output
else:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.loss
self.output_layer_activation = self.layers[i]
# If layer contains an attribute called "weights",
# it's a trainable layer -
# add it to the list of trainable layers
# We don't need to check for biases -
# checking for weights is enough
if hasattr(self.layers[i], 'weights'):
self.trainable_layers.append(self.layers[i])
# Update loss object with trainable layers
self.loss.remember_trainable_layers(self.trainable_layers)
# If output activation is Softmax and
# loss function is Categorical Cross-Entropy
# create an object of combined activation
# and loss function containing
# faster gradient calculation
if isinstance(self.layers[-1], Activation_Softmax) and isinstance(self.loss, Loss_CategoricalCrossentropy):
# Create an object of combined activation
# and loss functions
self.softmax_classifier_output = Activation_Softmax_Loss_CategoricalCrossentropy()
# Train the model
def train(self, X, y, *, epochs=1, print_every=1, validation_data=None):
# Initialize accuracy object
self.accuracy.init(y)
# Main training loop
for epoch in range(1, epochs+1):
# Perform the forward pass
output = self.forward(X, training=True)
# Calculate loss
data_loss, regularization_loss = self.loss.calculate(output, y, include_regularization=True)
loss = data_loss + regularization_loss
# Get predictions and calculate an accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, y)
# Perform backward pass
self.backward(output, y)
# Optimize (update parameters)
self.optimizer.pre_update_params()
for layer in self.trainable_layers:
self.optimizer.update_params(layer)
self.optimizer.post_update_params()
# Print a summary
if not epoch % print_every:
print(f'epoch: {epoch}, ' +
f'acc: {accuracy:.3f}, ' +
f'loss: {loss:.3f} (' +
f'data_loss: {data_loss:.3f}, ' +
f'reg_loss: {regularization_loss:.3f}), ' +
f'lr: {self.optimizer.current_learning_rate}')
# If there is the validation data
if validation_data is not None:
# For better readability
X_val, y_val = validation_data
# Perform the forward pass
output = self.forward(X_val, training=False)
# Calculate the loss
loss = self.loss.calculate(output, y_val)
# Get predictions and calculate an accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, y_val)
# Print a summary
print(f'validation, ' +
f'acc: {accuracy:.3f}, ' +
f'loss: {loss:.3f}')
# Performs forward pass
def forward(self, X, training):
# Call forward method on the input layer
# this will set the output property that
# the first layer in "prev" object is expecting
self.input_layer.forward(X, training)
# Call forward method of every object in a chain
# Pass output of the previous object as a parameter
for layer in self.layers:
layer.forward(layer.prev.output, training)
# "layer" is now the last object from the list,
# return its output
return layer.output
# Performs backward pass
def backward(self, output, y):
# If softmax classifier
if self.softmax_classifier_output is not None:
# First call backward method
# on the combined activation/loss
# this will set dinputs property
self.softmax_classifier_output.backward(output, y)
# Since we'll not call backward method of the last layer
# which is Softmax activation
# as we used combined activation/loss
# object, let's set dinputs in this object
self.layers[-1].dinputs = self.softmax_classifier_output.dinputs
# Call backward method going through
# all the objects but last
# in reversed order passing dinputs as a parameter
for layer in reversed(self.layers[:-1]):
layer.backward(layer.next.dinputs)
return
# First call backward method on the loss
# this will set dinputs property that the last
# layer will try to access shortly
self.loss.backward(output, y)
# Call backward method going through all the objects
# in reversed order passing dinputs as a parameter
for layer in reversed(self.layers):
layer.backward(layer.next.dinputs)
此外,我们将不再需要Activation_Softmax_Loss_CategoricalCrossentropy
类的初始化器和前向传播方法,因此我们可以将它们移除,仅保留反向传播方法:
# Softmax classifier - combined Softmax activation
# and cross-entropy loss for faster backward step
class Activation_Softmax_Loss_CategoricalCrossentropy():
...
# Backward pass
def backward(self, dvalues, y_true):
# Number of samples
samples = len(dvalues)
# Copy so we can safely modify
self.dinputs = dvalues.copy()
# Calculate gradient
self.dinputs[range(samples), y_true] -= 1
# Normalize gradient
self.dinputs = self.dinputs / samples
现在我们可以通过使用 Dropout
来测试更新后的 Model
对象:
# Create dataset
X, y = spiral_data(samples=1000, classes=3)
X_test, y_test = spiral_data(samples=100, classes=3)
# Instantiate the model
model = Model()
# Add layers
model.add(Layer_Dense(2, 512, weight_regularizer_l2=5e-4, bias_regularizer_l2=5e-4))
model.add(Activation_ReLU())
model.add(Layer_Dropout(0.1))
model.add(Layer_Dense(512, 3))
model.add(Activation_Softmax())
# Set loss, optimizer and accuracy objects
model.set(
loss=Loss_CategoricalCrossentropy(),
optimizer=Optimizer_Adam(learning_rate=0.05, decay=5e-5),
accuracy=Accuracy_Categorical()
)
# Finalize the model
model.finalize()
# Train the model
model.train(X, y, validation_data=(X_test, y_test), epochs=10000, print_every=100)
>>>
epoch: 100, acc: 0.716, loss: 0.726 (data_loss: 0.666, reg_loss: 0.060), lr:
0.04975371909050202
epoch: 200, acc: 0.787, loss: 0.615 (data_loss: 0.538, reg_loss: 0.077), lr:
0.049507401356502806
...
epoch: 9900, acc: 0.861, loss: 0.436 (data_loss: 0.389, reg_loss: 0.046),
lr: 0.0334459346466437
epoch: 10000, acc: 0.880, loss: 0.394 (data_loss: 0.347, reg_loss: 0.047),
lr: 0.03333444448148271
validation, acc: 0.867, loss: 0.379
看起来一切都按预期工作。现在有了这个 Model 类,我们可以定义新的模型,而无需重复编写大量代码。重复编写代码不仅令人厌烦,还更容易出现一些难以察觉的小错误。
到目前为止的完整代码:
import numpy as np
import nnfs
from nnfs.datasets import sine_data, spiral_data
import sys
nnfs.init()
# Dense layer
class Layer_Dense:
# Layer initialization
def __init__(self, n_inputs, n_neurons,
weight_regularizer_l1=0, weight_regularizer_l2=0,
bias_regularizer_l1=0, bias_regularizer_l2=0):
# Initialize weights and biases
# self.weights = 0.01 * np.random.randn(n_inputs, n_neurons)
self.weights = 0.1 * np.random.randn(n_inputs, n_neurons)
self.biases = np.zeros((1, n_neurons))
# Set regularization strength
self.weight_regularizer_l1 = weight_regularizer_l1
self.weight_regularizer_l2 = weight_regularizer_l2
self.bias_regularizer_l1 = bias_regularizer_l1
self.bias_regularizer_l2 = bias_regularizer_l2
# Forward pass
def forward(self, inputs, training):
# Remember input values
self.inputs = inputs
# Calculate output values from inputs, weights and biases
self.output = np.dot(inputs, self.weights) + self.biases
# Backward pass
def backward(self, dvalues):
# Gradients on parameters
self.dweights = np.dot(self.inputs.T, dvalues)
self.dbiases = np.sum(dvalues, axis=0, keepdims=True)
# Gradients on regularization
# L1 on weights
if self.weight_regularizer_l1 > 0:
dL1 = np.ones_like(self.weights)
dL1[self.weights < 0] = -1
self.dweights += self.weight_regularizer_l1 * dL1
# L2 on weights
if self.weight_regularizer_l2 > 0:
self.dweights += 2 * self.weight_regularizer_l2 * self.weights
# L1 on biases
if self.bias_regularizer_l1 > 0:
dL1 = np.ones_like(self.biases)
dL1[self.biases < 0] = -1
self.dbiases += self.bias_regularizer_l1 * dL1
# L2 on biases
if self.bias_regularizer_l2 > 0:
self.dbiases += 2 * self.bias_regularizer_l2 * self.biases
# Gradient on values
self.dinputs = np.dot(dvalues, self.weights.T)
# Dropout
class Layer_Dropout:
# Init
def __init__(self, rate):
# Store rate, we invert it as for example for dropout
# of 0.1 we need success rate of 0.9
self.rate = 1 - rate
# Forward pass
def forward(self, inputs, training):
# Save input values
self.inputs = inputs
# If not in the training mode - return values
if not training:
self.output = inputs.copy()
return
# Generate and save scaled mask
self.binary_mask = np.random.binomial(1, self.rate, size=inputs.shape) / self.rate
# Apply mask to output values
self.output = inputs * self.binary_mask
# Backward pass
def backward(self, dvalues):
# Gradient on values
self.dinputs = dvalues * self.binary_mask
# Input "layer"
class Layer_Input:
# Forward pass
def forward(self, inputs, training):
self.output = inputs
# ReLU activation
class Activation_ReLU:
# Forward pass
def forward(self, inputs, training):
# Remember input values
self.inputs = inputs
# Calculate output values from inputs
self.output = np.maximum(0, inputs)
# Backward pass
def backward(self, dvalues):
# Since we need to modify original variable,
# let's make a copy of values first
self.dinputs = dvalues.copy()
# Zero gradient where input values were negative
self.dinputs[self.inputs <= 0] = 0
# Calculate predictions for outputs
def predictions(self, outputs):
return outputs
# Softmax activation
class Activation_Softmax:
# Forward pass
def forward(self, inputs, training):
# Remember input values
self.inputs = inputs
# Get unnormalized probabilities
exp_values = np.exp(inputs - np.max(inputs, axis=1, keepdims=True))
# Normalize them for each sample
probabilities = exp_values / np.sum(exp_values, axis=1, keepdims=True)
self.output = probabilities
# Backward pass
def backward(self, dvalues):
# Create uninitialized array
self.dinputs = np.empty_like(dvalues)
# Enumerate outputs and gradients
for index, (single_output, single_dvalues) in enumerate(zip(self.output, dvalues)):
# Flatten output array
single_output = single_output.reshape(-1, 1)
# Calculate Jacobian matrix of the output and
jacobian_matrix = np.diagflat(single_output) - np.dot(single_output, single_output.T)
# Calculate sample-wise gradient
# and add it to the array of sample gradients
self.dinputs[index] = np.dot(jacobian_matrix, single_dvalues)
# Calculate predictions for outputs
def predictions(self, outputs):
return np.argmax(outputs, axis=1)
# Sigmoid activation
class Activation_Sigmoid:
# Forward pass
def forward(self, inputs, training):
# Save input and calculate/save output
# of the sigmoid function
self.inputs = inputs
self.output = 1 / (1 + np.exp(-inputs))
# Backward pass
def backward(self, dvalues):
# Derivative - calculates from output of the sigmoid function
self.dinputs = dvalues * (1 - self.output) * self.output
# Calculate predictions for outputs
def predictions(self, outputs):
return (outputs > 0.5) * 1
# Linear activation
class Activation_Linear:
# Forward pass
def forward(self, inputs, training):
# Just remember values
self.inputs = inputs
self.output = inputs
# Backward pass
def backward(self, dvalues):
# derivative is 1, 1 * dvalues = dvalues - the chain rule
self.dinputs = dvalues.copy()
# Calculate predictions for outputs
def predictions(self, outputs):
return outputs
# SGD optimizer
class Optimizer_SGD:
# Initialize optimizer - set settings,
# learning rate of 1. is default for this optimizer
def __init__(self, learning_rate=1., decay=0., momentum=0.):
self.learning_rate = learning_rate
self.current_learning_rate = learning_rate
self.decay = decay
self.iterations = 0
self.momentum = momentum
# Call once before any parameter updates
def pre_update_params(self):
if self.decay:
self.current_learning_rate = self.learning_rate * (1. / (1. + self.decay * self.iterations))
# Update parameters
def update_params(self, layer):
# If we use momentum
if self.momentum:
# If layer does not contain momentum arrays, create them
# filled with zeros
if not hasattr(layer, 'weight_momentums'):
layer.weight_momentums = np.zeros_like(layer.weights)
# If there is no momentum array for weights
# The array doesn't exist for biases yet either.
layer.bias_momentums = np.zeros_like(layer.biases)
# Build weight updates with momentum - take previous
# updates multiplied by retain factor and update with
# current gradients
weight_updates = self.momentum * layer.weight_momentums - self.current_learning_rate * layer.dweights
layer.weight_momentums = weight_updates
# Build bias updates
bias_updates = self.momentum * layer.bias_momentums - self.current_learning_rate * layer.dbiases
layer.bias_momentums = bias_updates
# Vanilla SGD updates (as before momentum update)
else:
weight_updates = -self.current_learning_rate * layer.dweights
bias_updates = -self.current_learning_rate * layer.dbiases
# Update weights and biases using either
# vanilla or momentum updates
layer.weights += weight_updates
layer.biases += bias_updates
# Call once after any parameter updates
def post_update_params(self):
self.iterations += 1
# Adagrad optimizer
class Optimizer_Adagrad:
# Initialize optimizer - set settings
def __init__(self, learning_rate=1., decay=0., epsilon=1e-7):
self.learning_rate = learning_rate
self.current_learning_rate = learning_rate
self.decay = decay
self.iterations = 0
self.epsilon = epsilon
# Call once before any parameter updates
def pre_update_params(self):
if self.decay:
self.current_learning_rate = self.learning_rate * (1. / (1. + self.decay * self.iterations))
# Update parameters
def update_params(self, layer):
# If layer does not contain cache arrays,
# create them filled with zeros
if not hasattr(layer, 'weight_cache'):
layer.weight_cache = np.zeros_like(layer.weights)
layer.bias_cache = np.zeros_like(layer.biases)
# Update cache with squared current gradients
layer.weight_cache += layer.dweights**2
layer.bias_cache += layer.dbiases**2
# Vanilla SGD parameter update + normalization
# with square rooted cache
layer.weights += -self.current_learning_rate * layer.dweights / (np.sqrt(layer.weight_cache) + self.epsilon)
layer.biases += -self.current_learning_rate * layer.dbiases / (np.sqrt(layer.bias_cache) + self.epsilon)
# Call once after any parameter updates
def post_update_params(self):
self.iterations += 1
# RMSprop optimizer
class Optimizer_RMSprop:
# Initialize optimizer - set settings
def __init__(self, learning_rate=0.001, decay=0., epsilon=1e-7, rho=0.9):
self.learning_rate = learning_rate
self.current_learning_rate = learning_rate
self.decay = decay
self.iterations = 0
self.epsilon = epsilon
self.rho = rho
# Call once before any parameter updates
def pre_update_params(self):
if self.decay:
self.current_learning_rate = self.learning_rate * (1. / (1. + self.decay * self.iterations))
# Update parameters
def update_params(self, layer):
# If layer does not contain cache arrays,
# create them filled with zeros
if not hasattr(layer, 'weight_cache'):
layer.weight_cache = np.zeros_like(layer.weights)
layer.bias_cache = np.zeros_like(layer.biases)
# Update cache with squared current gradients
layer.weight_cache = self.rho * layer.weight_cache + (1 - self.rho) * layer.dweights**2
layer.bias_cache = self.rho * layer.bias_cache + (1 - self.rho) * layer.dbiases**2
# Vanilla SGD parameter update + normalization
# with square rooted cache
layer.weights += -self.current_learning_rate * layer.dweights / (np.sqrt(layer.weight_cache) + self.epsilon)
layer.biases += -self.current_learning_rate * layer.dbiases / (np.sqrt(layer.bias_cache) + self.epsilon)
# Call once after any parameter updates
def post_update_params(self):
self.iterations += 1
# Adam optimizer
class Optimizer_Adam:
# Initialize optimizer - set settings
def __init__(self, learning_rate=0.001, decay=0., epsilon=1e-7, beta_1=0.9, beta_2=0.999):
self.learning_rate = learning_rate
self.current_learning_rate = learning_rate
self.decay = decay
self.iterations = 0
self.epsilon = epsilon
self.beta_1 = beta_1
self.beta_2 = beta_2
# Call once before any parameter updates
def pre_update_params(self):
if self.decay:
self.current_learning_rate = self.learning_rate * (1. / (1. + self.decay * self.iterations))
# Update parameters
def update_params(self, layer):
# If layer does not contain cache arrays,
# create them filled with zeros
if not hasattr(layer, 'weight_cache'):
layer.weight_momentums = np.zeros_like(layer.weights)
layer.weight_cache = np.zeros_like(layer.weights)
layer.bias_momentums = np.zeros_like(layer.biases)
layer.bias_cache = np.zeros_like(layer.biases)
# Update momentum with current gradients
layer.weight_momentums = self.beta_1 * layer.weight_momentums + (1 - self.beta_1) * layer.dweights
layer.bias_momentums = self.beta_1 * layer.bias_momentums + (1 - self.beta_1) * layer.dbiases
# Get corrected momentum
# self.iteration is 0 at first pass
# and we need to start with 1 here
weight_momentums_corrected = layer.weight_momentums / (1 - self.beta_1 ** (self.iterations + 1))
bias_momentums_corrected = layer.bias_momentums / (1 - self.beta_1 ** (self.iterations + 1))
# Update cache with squared current gradients
layer.weight_cache = self.beta_2 * layer.weight_cache + (1 - self.beta_2) * layer.dweights**2
layer.bias_cache = self.beta_2 * layer.bias_cache + (1 - self.beta_2) * layer.dbiases**2
# Get corrected cache
weight_cache_corrected = layer.weight_cache / (1 - self.beta_2 ** (self.iterations + 1))
bias_cache_corrected = layer.bias_cache / (1 - self.beta_2 ** (self.iterations + 1))
# Vanilla SGD parameter update + normalization
# with square rooted cache
layer.weights += -self.current_learning_rate * weight_momentums_corrected / (np.sqrt(weight_cache_corrected) + self.epsilon)
layer.biases += -self.current_learning_rate * bias_momentums_corrected / (np.sqrt(bias_cache_corrected) + self.epsilon)
# Call once after any parameter updates
def post_update_params(self):
self.iterations += 1
# Common loss class
class Loss:
# Regularization loss calculation
def regularization_loss(self):
# 0 by default
regularization_loss = 0
# Calculate regularization loss
# iterate all trainable layers
for layer in self.trainable_layers:
# L1 regularization - weights
# calculate only when factor greater than 0
if layer.weight_regularizer_l1 > 0:
regularization_loss += layer.weight_regularizer_l1 * np.sum(np.abs(layer.weights))
# L2 regularization - weights
if layer.weight_regularizer_l2 > 0:
regularization_loss += layer.weight_regularizer_l2 * np.sum(layer.weights * layer.weights)
# L1 regularization - biases
# calculate only when factor greater than 0
if layer.bias_regularizer_l1 > 0:
regularization_loss += layer.bias_regularizer_l1 * np.sum(np.abs(layer.biases))
# L2 regularization - biases
if layer.bias_regularizer_l2 > 0:
regularization_loss += layer.bias_regularizer_l2 * np.sum(layer.biases * layer.biases)
return regularization_loss
# Set/remember trainable layers
def remember_trainable_layers(self, trainable_layers):
self.trainable_layers = trainable_layers
# Calculates the data and regularization losses
# given model output and ground truth values
def calculate(self, output, y, *, include_regularization=False):
# Calculate sample losses
sample_losses = self.forward(output, y)
# Calculate mean loss
data_loss = np.mean(sample_losses)
# If just data loss - return it
if not include_regularization:
return data_loss
# Return the data and regularization losses
return data_loss, self.regularization_loss()
# Cross-entropy loss
class Loss_CategoricalCrossentropy(Loss):
# Forward pass
def forward(self, y_pred, y_true):
# Number of samples in a batch
samples = len(y_pred)
# Clip data to prevent division by 0
# Clip both sides to not drag mean towards any value
y_pred_clipped = np.clip(y_pred, 1e-7, 1 - 1e-7)
# Probabilities for target values -
# only if categorical labels
if len(y_true.shape) == 1:
correct_confidences = y_pred_clipped[
range(samples),
y_true
]
# Mask values - only for one-hot encoded labels
elif len(y_true.shape) == 2:
correct_confidences = np.sum(y_pred_clipped * y_true, axis=1)
# Losses
negative_log_likelihoods = -np.log(correct_confidences)
return negative_log_likelihoods
# Backward pass
def backward(self, dvalues, y_true):
# Number of samples
samples = len(dvalues)
# Number of labels in every sample
# We'll use the first sample to count them
labels = len(dvalues[0])
# If labels are sparse, turn them into one-hot vector
if len(y_true.shape) == 1:
y_true = np.eye(labels)[y_true]
# Calculate gradient
self.dinputs = -y_true / dvalues
# Normalize gradient
self.dinputs = self.dinputs / samples
# Softmax classifier - combined Softmax activation
# and cross-entropy loss for faster backward step
class Activation_Softmax_Loss_CategoricalCrossentropy():
# # Creates activation and loss function objects
# def __init__(self):
# self.activation = Activation_Softmax()
# self.loss = Loss_CategoricalCrossentropy()
# # Forward pass
# def forward(self, inputs, y_true):
# # Output layer's activation function
# self.activation.forward(inputs)
# # Set the output
# self.output = self.activation.output
# # Calculate and return loss value
# return self.loss.calculate(self.output, y_true)
# Backward pass
def backward(self, dvalues, y_true):
# Number of samples
samples = len(dvalues)
# If labels are one-hot encoded,
# turn them into discrete values
if len(y_true.shape) == 2:
y_true = np.argmax(y_true, axis=1)
# Copy so we can safely modify
self.dinputs = dvalues.copy()
# Calculate gradient
self.dinputs[range(samples), y_true] -= 1
# Normalize gradient
self.dinputs = self.dinputs / samples
# Binary cross-entropy loss
class Loss_BinaryCrossentropy(Loss):
# Forward pass
def forward(self, y_pred, y_true):
# Clip data to prevent division by 0
# Clip both sides to not drag mean towards any value
y_pred_clipped = np.clip(y_pred, 1e-7, 1 - 1e-7)
# Calculate sample-wise loss
sample_losses = -(y_true * np.log(y_pred_clipped) + (1 - y_true) * np.log(1 - y_pred_clipped))
sample_losses = np.mean(sample_losses, axis=-1)
# Return losses
return sample_losses
# Backward pass
def backward(self, dvalues, y_true):
# Number of samples
samples = len(dvalues)
# Number of outputs in every sample
# We'll use the first sample to count them
outputs = len(dvalues[0])
# Clip data to prevent division by 0
# Clip both sides to not drag mean towards any value
clipped_dvalues = np.clip(dvalues, 1e-7, 1 - 1e-7)
# Calculate gradient
self.dinputs = -(y_true / clipped_dvalues - (1 - y_true) / (1 - clipped_dvalues)) / outputs
# Normalize gradient
self.dinputs = self.dinputs / samples
# Mean Squared Error loss
class Loss_MeanSquaredError(Loss): # L2 loss
# Forward pass
def forward(self, y_pred, y_true):
# Calculate loss
sample_losses = np.mean((y_true - y_pred)**2, axis=-1)
# Return losses
return sample_losses
# Backward pass
def backward(self, dvalues, y_true):
# Number of samples
samples = len(dvalues)
# Number of outputs in every sample
# We'll use the first sample to count them
outputs = len(dvalues[0])
# Gradient on values
self.dinputs = -2 * (y_true - dvalues) / outputs
# Normalize gradient
self.dinputs = self.dinputs / samples
# Mean Absolute Error loss
class Loss_MeanAbsoluteError(Loss): # L1 loss
def forward(self, y_pred, y_true):
# Calculate loss
sample_losses = np.mean(np.abs(y_true - y_pred), axis=-1)
# Return losses
return sample_losses
# Backward pass
def backward(self, dvalues, y_true):
# Number of samples
samples = len(dvalues)
# Number of outputs in every sample
# We'll use the first sample to count them
outputs = len(dvalues[0])
# Calculate gradient
self.dinputs = np.sign(y_true - dvalues) / outputs
# Normalize gradient
self.dinputs = self.dinputs / samples
# Common accuracy class
class Accuracy:
# Calculates an accuracy
# given predictions and ground truth values
def calculate(self, predictions, y):
# Get comparison results
comparisons = self.compare(predictions, y)
# Calculate an accuracy
accuracy = np.mean(comparisons)
# Return accuracy
return accuracy
# Accuracy calculation for classification model
class Accuracy_Categorical(Accuracy):
# No initialization is needed
def init(self, y):
pass
# Compares predictions to the ground truth values
def compare(self, predictions, y):
if len(y.shape) == 2:
y = np.argmax(y, axis=1)
return predictions == y
# Accuracy calculation for regression model
class Accuracy_Regression(Accuracy):
def __init__(self):
# Create precision property
self.precision = None
# Calculates precision value
# based on passed in ground truth
def init(self, y, reinit=False):
if self.precision is None or reinit:
self.precision = np.std(y) / 250
# Compares predictions to the ground truth values
def compare(self, predictions, y):
return np.absolute(predictions - y) < self.precision
# Model class
class Model:
def __init__(self):
# Create a list of network objects
self.layers = []
# Softmax classifier's output object
self.softmax_classifier_output = None
# Add objects to the model
def add(self, layer):
self.layers.append(layer)
# Set loss, optimizer and accuracy
def set(self, *, loss, optimizer, accuracy):
self.loss = loss
self.optimizer = optimizer
self.accuracy = accuracy
# Finalize the model
def finalize(self):
# Create and set the input layer
self.input_layer = Layer_Input()
# Count all the objects
layer_count = len(self.layers)
# Initialize a list containing trainable layers:
self.trainable_layers = []
# Iterate the objects
for i in range(layer_count):
# If it's the first layer,
# the previous layer object is the input layer
if i == 0:
self.layers[i].prev = self.input_layer
self.layers[i].next = self.layers[i+1]
# All layers except for the first and the last
elif i < layer_count - 1:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.layers[i+1]
# The last layer - the next object is the loss
# Also let's save aside the reference to the last object
# whose output is the model's output
else:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.loss
self.output_layer_activation = self.layers[i]
# If layer contains an attribute called "weights",
# it's a trainable layer -
# add it to the list of trainable layers
# We don't need to check for biases -
# checking for weights is enough
if hasattr(self.layers[i], 'weights'):
self.trainable_layers.append(self.layers[i])
# Update loss object with trainable layers
self.loss.remember_trainable_layers(self.trainable_layers)
# If output activation is Softmax and
# loss function is Categorical Cross-Entropy
# create an object of combined activation
# and loss function containing
# faster gradient calculation
if isinstance(self.layers[-1], Activation_Softmax) and isinstance(self.loss, Loss_CategoricalCrossentropy):
# Create an object of combined activation
# and loss functions
self.softmax_classifier_output = Activation_Softmax_Loss_CategoricalCrossentropy()
# Train the model
def train(self, X, y, *, epochs=1, print_every=1, validation_data=None):
# Initialize accuracy object
self.accuracy.init(y)
# Main training loop
for epoch in range(1, epochs+1):
# Perform the forward pass
output = self.forward(X, training=True)
# Calculate loss
data_loss, regularization_loss = self.loss.calculate(output, y, include_regularization=True)
loss = data_loss + regularization_loss
# Get predictions and calculate an accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, y)
# Perform backward pass
self.backward(output, y)
# Optimize (update parameters)
self.optimizer.pre_update_params()
for layer in self.trainable_layers:
self.optimizer.update_params(layer)
self.optimizer.post_update_params()
# Print a summary
if not epoch % print_every:
print(f'epoch: {epoch}, ' +
f'acc: {accuracy:.3f}, ' +
f'loss: {loss:.3f} (' +
f'data_loss: {data_loss:.3f}, ' +
f'reg_loss: {regularization_loss:.3f}), ' +
f'lr: {self.optimizer.current_learning_rate}')
# If there is the validation data
if validation_data is not None:
# For better readability
X_val, y_val = validation_data
# Perform the forward pass
output = self.forward(X_val, training=False)
# Calculate the loss
loss = self.loss.calculate(output, y_val)
# Get predictions and calculate an accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, y_val)
# Print a summary
print(f'validation, ' +
f'acc: {accuracy:.3f}, ' +
f'loss: {loss:.3f}')
# Performs forward pass
def forward(self, X, training):
# Call forward method on the input layer
# this will set the output property that
# the first layer in "prev" object is expecting
self.input_layer.forward(X, training)
# Call forward method of every object in a chain
# Pass output of the previous object as a parameter
for layer in self.layers:
layer.forward(layer.prev.output, training)
# "layer" is now the last object from the list,
# return its output
return layer.output
# Performs backward pass
def backward(self, output, y):
# If softmax classifier
if self.softmax_classifier_output is not None:
# First call backward method
# on the combined activation/loss
# this will set dinputs property
self.softmax_classifier_output.backward(output, y)
# Since we'll not call backward method of the last layer
# which is Softmax activation
# as we used combined activation/loss
# object, let's set dinputs in this object
self.layers[-1].dinputs = self.softmax_classifier_output.dinputs
# Call backward method going through
# all the objects but last
# in reversed order passing dinputs as a parameter
for layer in reversed(self.layers[:-1]):
layer.backward(layer.next.dinputs)
return
# First call backward method on the loss
# this will set dinputs property that the last
# layer will try to access shortly
self.loss.backward(output, y)
# Call backward method going through all the objects
# in reversed order passing dinputs as a parameter
for layer in reversed(self.layers):
layer.backward(layer.next.dinputs)
# # Create dataset
# X, y = sine_data()
# # Instantiate the model
# model = Model()
# # Add layers
# model.add(Layer_Dense(1, 64))
# model.add(Activation_ReLU())
# model.add(Layer_Dense(64, 64))
# model.add(Activation_ReLU())
# model.add(Layer_Dense(64, 1))
# model.add(Activation_Linear())
# # Set loss and optimizer objects
# model.set(
# loss=Loss_MeanSquaredError(),
# optimizer=Optimizer_Adam(learning_rate=0.005, decay=1e-3),
# accuracy=Accuracy_Regression()
# )
# # Finalize the model
# model.finalize()
# model.train(X, y, epochs=10000, print_every=100)
#########################################################################################
# # Create train and test dataset
# X, y = spiral_data(samples=100, classes=2)
# X_test, y_test = spiral_data(samples=100, classes=2)
# # Reshape labels to be a list of lists
# # Inner list contains one output (either 0 or 1)
# # per each output neuron, 1 in this case
# y = y.reshape(-1, 1)
# y_test = y_test.reshape(-1, 1)
# # Instantiate the model
# model = Model()
# # Add layers
# model.add(Layer_Dense(2, 64, weight_regularizer_l2=5e-4, bias_regularizer_l2=5e-4))
# model.add(Activation_ReLU())
# model.add(Layer_Dense(64, 1))
# model.add(Activation_Sigmoid())
# # Set loss, optimizer and accuracy objects
# model.set(
# loss=Loss_BinaryCrossentropy(),
# optimizer=Optimizer_Adam(decay=5e-7),
# accuracy=Accuracy_Categorical()
# )
# # Finalize the model
# model.finalize()
# # Train the model
# model.train(X, y, validation_data=(X_test, y_test), epochs=10000, print_every=100)
#########################################################################################
# Create dataset
X, y = spiral_data(samples=1000, classes=3)
X_test, y_test = spiral_data(samples=100, classes=3)
# Instantiate the model
model = Model()
# Add layers
model.add(Layer_Dense(2, 512, weight_regularizer_l2=5e-4, bias_regularizer_l2=5e-4))
model.add(Activation_ReLU())
model.add(Layer_Dropout(0.1))
model.add(Layer_Dense(512, 3))
model.add(Activation_Softmax())
# Set loss, optimizer and accuracy objects
model.set(
loss=Loss_CategoricalCrossentropy(),
optimizer=Optimizer_Adam(learning_rate=0.05, decay=5e-5),
accuracy=Accuracy_Categorical()
)
# Finalize the model
model.finalize()
# Train the model
model.train(X, y, validation_data=(X_test, y_test), epochs=10000, print_every=100)
本章的章节代码、更多资源和勘误表:https://nnfs.io/ch18