开放词汇目标检测(Open-Vocabulary Object Detection, OVOD)综述

news2024/12/22 22:35:05

定义

开放词汇目标检测(Open-Vocabulary Object Detection, OVOD)是一种目标检测任务,旨在检测和识别那些未在训练集中明确标注的物体类别。传统的目标检测模型通常只能识别有限数量的预定义类别,而OVOD模型则具有识别“开放词汇”类别的能力,即在测试时可以识别和定位那些未曾在训练集中见过的类别。与开放词汇目标检测相对应的另一个重要概念是开集目标检测(Open-Set Object Detection, OSOD)。OSOD的目标是检测那些未在训练集中出现的未知类别,并将其标记为“未知”。与OVOD的不同之处在于,OSOD并不试图去识别这些未知类别是什么,而是关注于准确地检测它们的存在。本质上,开放词汇目标检测任务(Open-Vocabulary Object Detection)与零样本目标检测(Zero Shot Object Detection)、弱监督目标检测(Weakly supervised Object Detection)非常类似,核心思想都是在可见类(base class)的数据上进行训练,然后完成对不可见类(unseen/ target)数据的识别和检测。

参考链接:
https://blog.csdn.net/mieshizhishou/article/details/141216656
https://zhuanlan.zhihu.com/p/610639148

相关工作

OVR-CNN

2021年发表在CVPR的"open-vocabulary object detection using captions"是开放词汇对象检测领域第一篇重要工作,利用大规模image-caption数据改善对未知类的检测能力。本文提出了新的目标检测范式,用 image-caption 数据预训练视觉编码器。
论文:https://arxiv.org/pdf/2011.10678
源码:https://github.com/alirezazareian/ovr-cnn
解读:https://blog.csdn.net/jiaoyangwm/article/details/132000797
在这里插入图片描述

CLIP

于2021年由OpenAI发布。CLIP是一种图文多模态预训练神经网络。
基于视觉模型图像编码&基于nlp模型文本编码&相似度对比学习
论文:https://arxiv.org/pdf/2103.00020
源码:https://github.com/openai/CLIP
解读:https://blog.csdn.net/weixin_38252409/article/details/133828294
应用:图像分类、文本到图像检索、图像生成(结合GAN)、视觉问答(结合nlp)
在这里插入图片描述

ViLD

于2021 年由 Google Research 的Xiuye Gu等人提出。
以类似于Mask R-CNN 的两阶段检测器作为基础框架,第一阶段通过骨干网络(backbone)和区域提议网络(RPN)生成候选区域提议(proposals),第二阶段对这些提议进行分类和边界框回归,以确定目标的类别和位置。使用预训练的 CLIP 模型中的图像编码器和文本编码器,图像特征&文本特征&匹配关系等多模态信息融合共同优化损失函数。
论文:https://arxiv.org/pdf/2104.13921
源码:https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild
解读:https://hub.baai.ac.cn/view/12691
在这里插入图片描述

GLIP

于2021 年 12 月 7 日由微软团队首次发布提出。CLIP适用于分类任务,而GLIP尝试将这一技术应用于目标检测等复杂任务。视觉编码器&文本编码器&词-区域对齐&边界框回归
论文:https://arxiv.org/pdf/2112.03857.pdf
源码:https://github.com/microsoft/GLIP
解读:https://zhuanlan.zhihu.com/p/690342065
应用:开放词汇物体检测、视觉问答(VQA)、图像描述生成与检索
在这里插入图片描述

RegionCLIP

于2021年12月由微软团队提出。
基于预训练好的 CLIP 模型构建了一个 R-CNN 形式的目标检测器。
论文:https://arxiv.org/pdf/2112.09106.pdf
源码:https://github.com/microsoft/RegionCLIP
解读:https://blog.csdn.net/jiaoyangwm/article/details/131960703
在这里插入图片描述

Detic

于2022年1月由 Meta AI 和德克萨斯大学奥斯汀分校提出。
本质:使用图像分类的数据集来对目标检测器的分类头进行训练。
为了使得分类的分支具备检测出novel class的能力,基于image-supervised loss 的Detic,其将分类与定位解耦成两个问题,在分类时不再那么依赖标注数据。同样是两阶段范式。
论文:https://arxiv.org/pdf/2201.02605v3
源码:https://github.com/facebookresearch/Detic
解读:https://developer.aliyun.com/article/1277234

OWLViT

于2022 年由 Google Research 的 Matthias Minderer 等人提出。
OWL-ViT同样是以CLIP为多模态主干,创新之处在于其用于目标检测的微调阶段。在微调阶段,采用每个输出 token 的线性投影来获取每个对象的图像嵌入,而不是 CLIP 中使用的 token 池化和最终投影层。这些嵌入随后用于分类,而边界框坐标则是通过一个小型的 MLP 从 token 表示中推导出来的。支持基于图像嵌入做查询,允许检测难以通过文本描述的图像。
现在已经更新OWLViTv2。
论文:https://arxiv.org/pdf/2205.06230
源码:https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
解读:https://zhuanlan.zhihu.com/p/613249723
在这里插入图片描述

VLDet

VLDet网络包括三个部分:视觉目标检测器,文本编码器和区域-词语之间的对齐。本文选择了Faster R-CNN作为目标检测模型。 目标检测的第一阶段与Faster R-CNN相同,通过RPN预测前景目标。为了适应开放词汇的设置,VLDet在两个方面修改了检测器的第二阶段:(1)使用所有类共享的定位分支,定位分支预测边界框而不考虑它们的类别。 (2) 使用文本特征替换可训练分类器权重,将检测器转换为开放词汇式检测器。 本文使用固定的预训练语言模型CLIP作为文本编码器。
论文:https://arxiv.org/pdf/2211.14843
源码:https://github.com/clin1223/VLDet
解读:https://blog.csdn.net/hanseywho/article/details/129143747
在这里插入图片描述

BARON

于2023年由Wu Size等人提出。首次提出了对齐 bag of regions 的 embedding,之前的方法都是对齐单个 region 的 embedding。基于 Faster R-CNN,为了让 Faster RNN 能够检测出任意词汇概念的目标,作者使用了一个线性映射层代替原本的分类器,将区域特征映射为伪词。
论文:https://arxiv.org/pdf/2302.13996
源码:https://github.com/wusize/ovdet
解读:https://blog.csdn.net/wzk4869/article/details/129713529
在这里插入图片描述

视觉-DINO

于2021年由 Facebook AI Research提出。
DINO学生网络和教师网络,两者具有相同的架构但参数不同,输入不同的图像视图,学生网络的输出通过与教师网络输出计算交叉熵损失来进行学习,教师网络使用学生网络的指数移动平均(EMA)进行更新。使用对比学习方法及全局自注意力机制,放弃负采样对的做法。
自监督的ViT可以呈现图像的语义分割信息,且在图像类间有良好的区分度。通过一个KNN就可以达到很高的分类准确率,所以用于算图像相似度、以图搜图的话应该是个好的选择。
论文:https://arxiv.org/pdf/2104.14294
代码:https://github.com/facebookresearch/dino
解读:https://zhuanlan.zhihu.com/p/635104575

视觉-DINOv2

于2023年由Meta AI Research提出。增强版DINO、大规模数据集LVD-142M
DINOv2包含两个完全相同的 ResNet 网络,其中一个作为学生网络,另一个作为教师网络,输入不同的图像,输出通过动量更新机制交互学习,这种结构有助于更好地学习图像的局部特征与全局特征。采用FlashAttention 机制,在同一前向传递中全局裁剪和局部裁剪,跳过了丢弃残差的计算。训练时采用全分片数据并行(FSDP)。
论文:https://arxiv.org/pdf/2304.07193
代码:https://github.com/facebookresearch/dinov2
解读:https://blog.csdn.net/CVHub/article/details/130304078

GroundingDINO

于2023年由清华大学、IDEA 研究院联合提出。GLIP是基于传统的one-stage detector结构,而Grounding DINO是一个双encoder单decoder结构,它包含了1个image backbone(Swin Transformer)用于提取多尺度图像特征,1个text backbone用于提取文本特征,1个feature enhancer用于融合图像和文本特征,1个language-guide query selection模块用于query初始化,1个cross-modality decoder用于bbox预测。
论文:https://arxiv.org/pdf/2303.05499
源码:https://github.com/IDEA-Research/GroundingDINO
解读:https://zhuanlan.zhihu.com/p/627646794
在这里插入图片描述

OV-DINO

于2024年由中山大学和美团联合提出。使用Swin Transformer作为图像编码器和BERT-base作为文本编码器的模型架构。统一的数据整合(UniDI)管道实现端到端训练,语言感知选择性融合(LASF)模块来优化跨模态的语义对齐。
论文:https://arxiv.org/pdf/2407.07844
源码:https://github.com/wanghao9610/OV-DINO
解读:https://blog.csdn.net/amusi1994/article/details/140836256
在这里插入图片描述

YOLO-World

于2024年由腾讯 AI 实验室提出。基于yolov8开发,采用CLIP预训练的Transformer文本编码器提取相应的文本嵌入,通过视觉语言建模和大规模数据集的预训练,提出一种新的可重新参数化的视觉-语言路径聚合网络(RepVL-PAN)和区域-文本对比损失,以促进视觉和语言信息之间的交互,增强了 YOLO 的开放词汇检测功能。
论文:https://arxiv.org/pdf/2401.17270v3
源码:https://github.com/AILAB-CVC/YOLO-World
解读:https://blog.csdn.net/weixin_47151388/article/details/137424184
在这里插入图片描述

其他最新工作2024-CVPR-Open-Vocabulary:

https://blog.csdn.net/m0_74163093/article/details/143247918

总结

综上,大多数工作均基于CLIP预训练的图像编码器和文本编码器。GlIP为解决目标检测任务提供了先例,后续很多工作常与目前较为广泛使用的目标检测网络结构相结合,从而构建新的开放词汇目标检测器。如ViLD基于Mask R-CNN、RegionCLIP基于R-CNN、VLDet和BARON基于Faster R-CNN。更具有创新性的工作是Detic,提出了使用图像分类的数据集来对目标检测器的分类头进行训练。OWL-ViT在目标检测微调阶段做创新,最有意思的是其支持基于图像嵌入做查询,允许检测难以通过文本描述的图像。这部分优势可能会使这个项目更能应用到实际任务中。另外的基于DINO的工作中,GroundingDINO更偏向于开集目标检测(OSOD)任务。与GLIP和G-DINO等其他方法相比,OV-DINO的预测更加精确,并且能够检测到标签中未标记的额外对象。而YOLO-World则主要是对yolov8的改进,目的在于为yolo架构赋予开放词汇检测能力。从开放词汇检测方案的发展历程上来看,YOLO-World的目标检测部分依然是单阶段范式的目标检测器,虽然效率更高速度更快,但一般不如两阶段范式的目标检测模型精度高。
开放词汇目标检测的核心思想是利用视觉-语言联合建模方法,将视觉特征和语言特征进行关联,从而实现对未见物体类别的检测。一般地,这类方法的关键组成有:
1.视觉特征提取(包括大规模图-文数据预训练、知识蒸馏、生成伪标签等)
2.文本嵌入(基于transformer)
3.视觉-语言匹配(基于referring 或grounding)
4.多模态融合

至于为何能做到开放词汇检测,关键在于利用了大规模预训练语言模型和视觉-语言联合表示学习。语言模型能够理解未见词语的语义,通过将目标类别名称编码为文本向量,然后与图像中的物体特征向量进行相似度计算。比如,对于一个新的类别 “独角兽”,语言模型能够理解这个词的语义,并且帮助检测器在图像中寻找具有相似语义特征的物体。

开放词汇对象检测/分割方案的常见架构

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2263927.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JaxaFx学习(三)

目录: (1)JavaFx MVVM架构实现 (2)javaFX知识点 (3)JavaFx的MVC架构 (4)JavaFx事件处理机制 (5)多窗体编程 (6)数据…

【C++】小乐乐求和问题的高效求解与算法对比分析

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯问题描述与数学模型1.1 题目概述1.2 输入输出要求1.3 数学建模 💯方法一:朴素循环求和法2.1 实现原理2.2 分析与问题2.3 改进方案2.4 性能瓶颈与结论…

基于Spring Boot的找律师系统

一、系统背景与意义 在现代社会,法律服务的需求日益增长,但传统寻找律师的方式往往存在信息不透明、选择困难等问题。基于Spring Boot的找律师系统旨在解决这些问题,通过线上平台,用户可以轻松搜索、比较和选择合适的律师&#x…

【Spring】方法注解@Bean,配置类扫描路径

阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 目录 引入 一:Bean方法注解 1:方法注解要搭配类注解使用 2:执行结果 …

深度学习0-前置知识

一、背景 AI最大,它的目的是通过让机器模仿人类进而超越人类; ML次之,它是AI的一个分支,是让机器模仿人类的一种方法。开发人员用大量数据和算法“训练”机器,让机器自行学会如何执行任务,它的成功取决于…

前端面试题整理-前端异步编程

1. 进程、线程、协程的区别 在并发编程领域,进程、线程和协程是三个核心概念,它们在资源管理、调度和执行上有着本质的不同。 首先,进程是操作系统进行资源分配和调度的独立单位(资源分配基本单位),每个进…

ARM学习(38)多进程多线程之间的通信方式

ARM学习(38)ARM学习(38)多进程多线程之间的通信方式 一、问题背景 笔者在调试模拟器的时候,碰到进程间通信的问题,一个进程在等另外一个进程ready的时候,迟迟等不到,然后通过调试发现,另外一个进程变量已经变化了,但是当前进程变量没变化,需要了解进程间通信的方式…

群晖利用acme.sh自动申请证书并且自动重载证书的问题解决

前言 21年的时候写了一个在群晖(黑群晖)下利用acme.sh自动申请Let‘s Encrypt的脚本工具 群晖使用acme自动申请Let‘s Encrypt证书脚本,自动申请虽然解决了,但是自动重载一直是一个问题,本人也懒,一想到去…

level2逐笔委托查询接口

沪深逐笔委托队列查询 前置步骤 分配数据库服务器 查询模板 以下是沪深委托队列查询的请求模板&#xff1a; http://<数据库服务器>/sql?modeorder_book&code<股票代码>&offset<offset>&token<token>查询参数说明 参数名类型说明mo…

delve调试环境搭建—golang

原文地址&#xff1a;delve调试环境搭建—golang – 无敌牛 欢迎参观我的个人博客&#xff1a;无敌牛 – 技术/著作/典籍/分享等 由于平时不用 IDE 开发环境&#xff0c;习惯在 linux终端vim 环境下开发&#xff0c;所以找了golang的调试工具&#xff0c;delve类似gdb的调试界…

PC寄存器(Program Counter Register) jvm

在JVM&#xff08;Java虚拟机&#xff09;中&#xff0c;PC寄存器&#xff08;Program Counter Register&#xff09;扮演着至关重要的角色&#xff0c;它是JVM执行引擎的核心组成部分之一。以下是PC寄存器在JVM中的具体角色和职责&#xff1a; 指令执行指针&#xff1a; PC寄存…

线性分类器(KNN,SVM损失,交叉熵损失,softmax)

KNN 工作机制 k-近邻算法的工作机制可以分为两个主要阶段&#xff1a;训练阶段和预测阶段。 训练阶段 在训练阶段&#xff0c;k-近邻算法并不进行显式的模型训练&#xff0c;而是简单地存储训练数据集。每个样本由特征向量和对应的标签组成。此阶段的主要任务是准备好数据&…

重拾设计模式--适配器模式

文章目录 适配器模式&#xff08;Adapter Pattern&#xff09;概述适配器模式UML图适配器模式的结构目标接口&#xff08;Target&#xff09;&#xff1a;适配器&#xff08;Adapter&#xff09;&#xff1a;被适配者&#xff08;Adaptee&#xff09;&#xff1a; 作用&#xf…

StarRocks:存算一体模式部署

目录 一、StarRocks 简介 二、StarRocks 架构 2.1 存算一体 2.2 存算分离 三、前期准备 3.1前提条件 3.2 集群规划 3.3 配置环境 3.4 准备部署文件 四、手动部署 4.1 部署FE节点 4.2 部署BE节点 4.3 部署CN节点&#xff08;可选&#xff09; 4.4 FE高可用…

找数字:JAVA

题目描述 试计算在区间1 到n 的所有整数中&#xff0c;数字x&#xff08;0 ≤ x ≤ 9&#xff09;共出现了多少次&#xff1f; 例如&#xff0c;在1到11 中&#xff0c;即在1、2、3、4、5、6、7、8、9、10、11 中&#xff0c;数字1 出现了4 次。 输入描述: 输入共1行&#xf…

AI的使用:结构化提示词

根据自己的使用&#xff0c;不断的完善自己的提示词。并且像程序版本一样管理和迭代自己的提示词&#xff0c;这样才能准确的按照自己的目的去使用AI。而为了更好的管理&#xff0c;我们在一开始使用的时候&#xff0c;就要有一个易于管理的定义&#xff0c;即&#xff1a;结构…

Netcat:网络中的瑞士军刀

免责声明&#xff1a;使用本教程或工具&#xff0c;用户必须遵守所有适用的法律和法规&#xff0c;并且用户应自行承担所有风险和责任。 文章目录 一、引言二、简述三、Netcat功能&#xff1f;四、参数选项五、Netcat 的常见功能六、高级用法多连接处理创建简单的代理 七、Netc…

VS Code Copilot 与 Cursor 对比

选手简介 VS Code Copilot&#xff1a;算是“老牌”编程助手了&#xff0c;虽然Copilot在别的编辑器上也有扩展&#xff0c;不过体验最好的还是VS Code&#xff0c;毕竟都是微软家的所以功能集成更好一些&#xff1b;主要提供的是Complete和Chat能力&#xff0c;也就是代码补全…

28、基于springboot的房屋租赁系统

房屋是人类生活栖息的重要场所&#xff0c;随着城市中的流动人口的增多&#xff0c;人们对房屋租赁需求越来越高&#xff0c;为满足用户查询房屋、预约看房、房屋租赁的需求&#xff0c;特开发了本基于Spring Boot的房屋租赁系统。 本文重点阐述了房屋租赁系统的开发过程&…

【Qt】显示类控件:QLabel、QLCDNumber、QProgressBar、QCalendarWidget

目录 QLabel QFrame 例子&#xff1a; textFormat pixmap、scaledContents alignment wordWrap、indent、margin buddy QLCDNumber 例子&#xff1a; QTimer QProgressBar 例子&#xff1a; QCalendarWidget 例子&#xff1a; QLabel 标签控件&#xff0c;用来显示…