计算机网络之网络层超详细讲解

news2024/12/13 21:12:54

个人主页:C++忠实粉丝
欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C++忠实粉丝 原创

计算机网络之网络层超详细讲解

收录于专栏【计算机网络】
本专栏旨在分享学习计算机网络的一点学习笔记,欢迎大家在评论区交流讨论💌 
  

目录

网络层

IP 协议 

基本概念 

协议头格式 

网段划分 

特殊的 IP 地址 

IP 地址的数量限制

私有 IP 地址和公网 IP 地址 

路由 


网络层

在复杂的网络环境中确定一个合适的路径.

IP 协议 

基本概念 

主机 : 配有 IP 地址, 但是不进行路由控制的设备.

路由器 : 即配有 IP 地址, 又能进行路由控制;

节点 : 主机和路由器的统称. 

协议头格式 

4位版本号 (version) : 指定 IP 协议的版本, 对于 IPv4 来说, 就是4

4位头部长度 (header length) : IP 头部的长度是多少个 32 bit, 也就是 length 4 的字节数, 4bit 标识最大的数字是 15, 因此 IP 头部最大长度是 60 字节 

8位服务类型 (Type Of Service) : 3位优先权字段 (已经弃用), 4位 TOS 字段, 和1位保留字段 (必须置为0), 4位 TOS 分别表示 : 最小延时, 最大吞吐量, 最高可靠性, 最小成本, 这四者相互冲突, 只能选择一个, 对于 ssh/telnet 这样的应用程序, 最小延时比较重要, 对于 ftp 这样的程序, 最大吞吐量比较重要

16位总长度 (total length) : IP 数据报整体占多少个字节.

16位标识 (id) : 唯一的标识主机发送的报文, 如果 IP 报文在数据链路层被分片了, 那么每一个片里面的这个 id 都是相同的.

3位标志字段 : 第一位保留 (保留的意思是现在不用, 但是还没想好说不定以后要用到), 第二位置为1表示禁止分片, 这时候如果报文长度超过 MTU, IP 模块就会丢弃报文, 第三位表示 "更多分片", 如果分片了的话,  最后一个分片位置为0, 其他是1, 类似于一个结束标志

13位分片偏移 (framegament offset)  : 是分片相对于原始 IP 报文开始处的偏移. 其实就是在表示当前分片在原报文中处在哪个位置, 实际偏移的字节数是这个值 /8 得到的. 因此, 除了最后一个报文之外, 其他报文的长度必须是 8 的整数倍 (否则报文就不连续了)

8位生存时间(Time To Live TTL) : 数据报到达目的地的最大报文跳数, 一般是64, 每次经过一个路由, TTL -= 1, 一直减到0还没到达, 那么就丢弃了, 这个字段主要是用来防止出现路由循环

8位协议 : 表示上层协议的类型

16位头部校验和 : 使用 CRC 进行校验, 来鉴别头部时候损坏.

32位源地址和32位目标地址 : 表示发送端和接收端

选项字段 (不定长, 最多40字节)

网段划分 

IP 地址分为两个部分, 网络号和主机号

网络号 : 保证相互连接的两个网段具有不同的标识

主机号 : 同一网段, 主机之间具有相同的网络号, 但是必须有不同的主机号. 

不同的子网其实就是把网络号相同的主机放到一起.

如果在子网中新增一台主机, 则这台主机的网络号和这个子网的网络号一致, 但是主机号必须不能和子网中的其他主机重复

通过合理设置主机号和网络号, 就可以保证相互连接的网络中, 每台主机的 IP 地址都不相同. 

那么问题来了, 手动管理子网内的 IP, 是一个相当麻烦的事情.

有一种技术叫做 DHCP, 能够自动的给子网内新增主机节点分配 IP 地址, 避免了手动管理 IP 的不便.

一般的路由器都带有 DHCP 功能, 因此路由器也可以看做一个 DHCP 服务器.

过去曾经提出一种划分网络号和主机号的方案, 把所有 IP 地址分为五类, 如下图所示 (手绘, 细节问题多多包容)

A类 : 0.0.0.0 到 127.255.255.255

B类 : 128.0.0.0 到 191.255.255.255

C类 : 192.0.0.0 到 223.255.255.255

D类 : 224.0.0.0 到 239.255.255.255

E类 : 240.0.0.0 到 247.255.255.255

随着Internet 的飞速发展, 这种划分方案的局限性很快显现出来了, 大多数组织都申请 B类网络地址, 导致 B 类地址很快就分配完了, 而 A 类却浪费了大量地址

例如, 申请一个B类地址, 理论上一个子网内能允许6万5千多个主机, A类地址的子网内的主机数更多.

然而实际网络架设中, 不会存在一个子网内有这么多的情况, 因此大量的 IP 地址都被浪费掉了

针对这种情况提出了新的划分方案, 称为 CIDR (Classless Interdomain Routing):

引入一个额外的子网掩码 (subnet mask) 来区分网络号和主机号

子网掩码也是一个32位正整数, 通常用一串 "0" 结尾

将 IP 地址和子网掩码进行 "按位与" 操作, 得到的结果就是网络号.

网络号和主机号的划分这个 IP 地址是 A 类, B类还是 C类无关. 

下面举两个例子

IP地址140.252.20.688C FC 14 44
子网掩码255.255.255.0FF FF FF 00
网络号140.252.20.08C FC 14 00
子网地址范围140.252.2.0 ~ 140.252.20.255
IP 地址140.252.20.68

8C FC 14 44

子网掩码255.255.255.240FF FF FF F0
网络号140.252.20.648C FC 14 40
子网地址范围140.252.20.64 ~ 140.252.20.79

子网掩码与网络号的关系

子网掩码用于确定网络号的主机号的划分. 子网掩码中连续的 1 表示网络号部分, 连续的 0 表示主机号部分.

在第一个例子中, 子网掩码是 255.255.255.0, 对应的二进制是 : 
11111111, 11111111, 11111111, 00000000. 这意味着前 24 位是网络号, 后 8 位是主机号.

在第二个例子中, 子网掩码是 255.255.255.240, 对应的二进制是 : 

11111111.11111111.11111111.11110000. 这意味着前 28 位是网络号, 后 4 位是主机号

那么第一个例子 : 

网络号是 140.252.20.0, 主机号部分有 8 位

主机号全 0 时是网络地址 : 140.252.20.0

主机号全为 1 时是广播地址 : 140.252.20.255

子网地址范围是 140.252.20.0 ~ 140.252.20.255 (除去网络地址和广播地址, 实际可用的主机地址范围是 140.252.30.1 ~ 140.252.20.254)

第二个例子 : 

网络号是 140.252.20.64, 主机号部分有 4 位

主机号全 0 时是网络地址 : 140.252.20.64

主机号全为 1 时是广播地址 : 140.252.20.79

子网地址范围是 140.252.20.64 ~ 140.252.20.79 (除去网络地址和广播地址, 实际可用的主机地址范围是 140.252.30.65 ~ 140.252.20.78)

可见, IP 地址与子网掩码做与运算可以得到网络号, 主机号从全0到全1就是子网的地址范围 : 

IP 地址和子网掩码还有一种简洁的表示方法, 例如 140.252.20.68/24, 表示 IP 地址为 140.252.20.68, 子网掩码的高24位是1, 也就是 255,255,255.0 

特殊的 IP 地址 

将 IP 地址中的主机地址全部设为0, 就成为了网络号, 代表这个局域网

将 IP 地址中的主机地址全部设为1, 就成为了广播地址, 用于给同一个链路中相互连接的所有主机发送数据包

127.* 的 IP 地址用于本机环回 (loop back) 测试, 通常是 127.0.0.1 

IP 地址的数量限制

我们知道, IP 地址 (IPv4) 是一个 4字节32位的正整数, 那么移动只有2的32次方个 IP 地址, 大概是 43 亿左右, 而 TCP/IP 协议规定, 每个主机都需要有一个 IP 地址

这意味着, 一共只有 43 亿台主机能接入网络吗?

实际上, 由于一些特殊的 IP 地址的存在, 数量远不足 43 亿, 另外 IP 地址并非是按照主机台数来配置的, 而是每一个网卡都需要配置一个或多个 IP 地址

CIDR 在一定程度上缓解了 IP 地址不够用的问题 (提高了利用率, 减少了浪费, 但是 IP 地址的绝对上限并没有增加), 仍然不是很够用, 这时候有三种方式来解决 : 

动态分配 IP 地址 : 只给接入网络的设备分配 IP 地址, 因此同一个 MAC 地址的设备, 每次接入互联网中, 得到的 IP 地址不一定是相同的.

NAT 技术 : (后面详细讲解~)

IPv6 : IPv6 并不是 IPv4 的简单升级版, 这是互不相干的两个协议, 彼此并不兼容, IPv6 用16字节128位来表示一个 IP 地址, 但是目前 IPv6 还没有普及.

私有 IP 地址和公网 IP 地址 

如果一个组织内部组建局域网, IP 地址只用于局域网内的通信, 而不直接连到 Iternet 上, 理论上使用任意的 IP 地址都可以, 但是 RFC 1918 规定了用于组建局域网的私有 IP 地址

10.* 前8位是网络号, 共 16,777,216 个地址

172.16* 到 172.31.*, 前 12 位是网络号, 共 1,028,576 个地址

192.168.*, 前 16 位是网络号, 共 65536 个地址

包含在这个范围中的, 都成为私有 IP, 其余的则称为全局 IP (或公网 IP)

一个路由器可以配置两个 IP 地址, 一个是 WAN 口 IP , 一个是 LAN 口 IP (子网 IP)

路由器 LAN 口连接的主机, 都从属于当前这个路由器的子网中

不同的路由器, 子网 IP 其实都是一样的 (通常是 192.168.1.1) 子网内的主机 IP 地址不能重复, 但是子网之间的 IP 地址就可以重复了.

每一个家用路由器, 其实又作为运营商路由器的子网中的一个节点, 这样的运营商路由器可能会有很多级, 最外层的运营商路由器, WAN 口 IP 就是一个公网 IP 了.

子网内的主机需要和外网进行通信时, 路由器将 IP 首部中的 IP 地址进行替换 (替换成 WAN 口 IP), 这样逐级替换, 最终数据包中的 IP 地址成为一个公网 IP, 这种技术称为 NAT (NetWork Address Transiation, 网络地址转换)

如果希望我们自己实现的服务器程序, 能够在公网上被访问到, 就需要把程序部署在一台具有外网 IP 的服务器上, 这样的而服务器可以在阿里云/腾讯云上进行购买.

路由 

在复杂的网络结构中, 找出一条通往重点的路线;

路由的过程, 就是这样一跳一跳 (Hop by Hop) "问路" 的过程.

所谓 "一跳" 就是数据链路层中的一个区间, 具体在以太网中指从源 MAC 地址到目的 MAC 地址之间的帧传输区间. 

IP 数据包的传输过程也和问路一样.

当 IP 数据包, 到达路由器时, 路由器会先查看目的 IP

路由器决定这个数据包是直接发送给目标主机, 还是需要发送给下一个路由器

依次反复, 一直到达目标 IP 地址了. 

那么如何判定当前这个数据包发送到哪里呢? 这个就依靠每个节点内部维护一个路由表; 

路由表可以使用 route 命令查看

如果目的 IP 命中了路由表, 及直接转发即可

路由表中的最后一行, 主要由下一跳地址和发送接口两部分组成, 当目的地址与路由表中其它都不匹配时, 就按缺省路由条目规定的接口发送到下一跳地址.

假设某主机上的网络接口配置和路由表如下: 
 

DestinationGetwayGenmaskFlagsMetricRefUse Iface
192.168.10.0*255,255,255.0U000 eth0
192.168.56.0*255.255.255.0U000 eth1
127.0.0.0*255.0.0.0000 lo
default192.168.10.10.0.0.0UG000 eth0

这台主机由两个网络接口, 一个网络接口连到 192.168.10.0/24网络, 另一个网络接口连到 192.168.56.0/24 网络

路由表 Destination 是目的网络地址, Genmask 是子网掩码, Gateway 是下一跳地址, Iface 是发送接口, Flags 中的 U 标志标识此条目有效 (可以禁用某些条目), G 标志表示此条目的下一跳地址是某个路由器的地址, 没有 G 标志的条目表示目的网络地址是与本机接口直接相连的网络, 不必经路由器转发

转发过程例1 : 如果要发送的数据包的目的地址是 192.168.56.3

跟第一行的子网掩码做与运算得到 192.168.56.0, 与第一行的目的网络地址不符

再跟第二行的子网掩码做与运算得到 192.168.56.0, 正是第二行的目的网络地址, 因此从 eth1 接口发送出去

由于 192.168.56.0/24 正是与 eth1 接口直接相连的网络, 因此可以直接发到目的的主机, 不需要经路由器转发 

转发过程例2 : 如果要发送的数据包的目的地址是 202.10.1.2 

依次和路由表前几项进行对比, 发现都不匹配

按缺省路由条目, 从 eth0 接口发出去, 发往 192.168.10.1 路由器

由 192.168.10.1 路由器根据它的路由表决定下一跳

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2258955.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

微信小程序:实现节点进度条的效果;正在完成的节点有动态循环效果;横向,纵向排列

参考说明 微信小程序实现流程进度功能 - 知乎 上面的为一个节点进度条的例子&#xff0c;但并不完整&#xff0c;根据上述代码&#xff0c;进行修改完善&#xff0c;实现其效果 横向效果 代码 wxml <view classorder_process><view classprocess_wrap wx:for&quo…

如何不重启修改K8S containerd容器的内存限制(Cgroup方法)

1. 使用crictl 查看容器ID crictl ps2. 查看Cgroup位置 crictl inspect 容器ID3. 到容器Cgroup的目录下 使用上个命令就能找到CgroupPath 4 . 到cgroup目录下 正确目录是 : /sys/fs/cgroup/memory/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-podf68e18…

海康威视摄像头RTSP使用nginx推流到服务器直播教程

思路&#xff1a; 之前2020年在本科的时候&#xff0c;由于项目的需求需要将海康威视的摄像头使用推流服务器到网页进行直播。这里将自己半个月琢磨出来的步骤给大家发一些。切勿转载&#xff01;&#xff01;&#xff01;&#xff01; 使用网络摄像头中的rtsp协议---------通…

智简模型,边缘智能:AI 轻量化与边缘计算的最佳实践

文章目录 摘要引言模型轻量化与优化方法模型量化模型剪枝知识蒸馏合理使用边缘计算硬件 轻量化图像分类实战1. 模型量化2. 知识蒸馏3. 学生模型的创建与训练 QA环节总结参考资料 摘要 边缘计算与 AI 模型的结合&#xff0c;能够在资源受限的环境中提供实时智能服务。通过模型轻…

flink sink kafka的事务提交现象猜想

现象 查看flink源码时 sink kafka有事务提交机制&#xff0c;查看源码发现是使用两阶段提交策略&#xff0c;而事务提交是checkpoint完成后才执行&#xff0c;那么如果checkpoint设置间隔时间比较长时&#xff0c;事务未提交之前&#xff0c;后端应该消费不到数据&#xff0c…

推送(push)项目到gitlab

文章目录 1、git init1.1、在当前目录中显示隐藏文件&#xff1a;1.2、查看已有的远程仓库1.3、确保你的本地机器已经生成了 SSH 密钥&#xff1a;1.4、将生成的公钥文件&#xff08;通常位于 ~/.ssh/id_rsa.pub&#xff09;复制到 GitLab 的 SSH 设置中&#xff1a;1.5、测试 …

7.Vue------$refs与$el详解 ------vue知识积累

$refs 与 $el是什么&#xff1f; 作用是什么? ref&#xff0c;$refs&#xff0c;$el &#xff0c;三者之间的关系是什么&#xff1f; ref (给元素或者子组件注册引用信息) 就像你要给元素设置样式&#xff0c;就需要先给元素设定一个 class 一样&#xff0c;同理&#xff0c;…

通俗易懂的 Nginx 反向代理 配置

通俗易懂的 Nginx 反向代理 配置 首先 root 与 alias 的区别 root 是直接拼接 root location location /i/ {root /data/w3; }当请求 /i/top.gif &#xff0c;/data/w3/i/top.gif 会被返回。 alias 是用 alias 替换 location location /i/ {alias /data/w3/images/; }当请…

git 导出某段时间修改的文件 windows

第一步&#xff1a;列出两次commitID之间的文件变动 git diff oldid newid --name-only// 例如 git diff 4a886c57a8b5611a2abcfcd120461c2e92f7029a HEAD --name-only 4a886c57a8b5611a2abcfcd120461c2e92f7029a 代表之前 HEAD 代表最新或者换成某次commitID 例如&#xf…

若依集成Uflo2工作流引擎

文章目录 1. 创建子模块并添加依赖1.1 新建子模块 ruoyi-uflo1.2 引入 Uflo2 相关依赖 2. 配置相关 config2.1 配置 ServletConfig2.2 配置 UfloConfig2.3 配置 TestEnvironmentProvider 3. 引入Uflo配置文件4. 启动并访问 Uflo2 是由 BSTEK 自主研发的一款基于 Java 的轻量级工…

BERT:用于语言理解的深度双向 Transformer 的预训练。

文章目录 0. 摘要1. 介绍2. 相关工作2.1 无监督的基于特征的方法2.3 无监督微调方法2.3 从受监督数据中迁移学习 3. BERT3.1 预训练 BERT3.2 微调 BERT 4. 实验4.1 GLUE4.2 SQuAD v1.14.3 SQuAD v2.04.4 SWAG 5. 消融研究5.1 预训练任务的影响5.2 模型大小的影响5.3 使用 BERT …

如何快速批量把 PDF 转为 JPG 或其它常见图像格式?

在某些特定场景下&#xff0c;将 PDF 转换为 JPG 图片格式却具有不可忽视的优势。例如&#xff0c;当我们需要在不支持 PDF 查看的设备或软件中展示文档内容时&#xff0c;JPG 图片能够轻松被识别和打开&#xff1b;此外&#xff0c;对于一些网络分享或社交媒体发布的需求&…

如何在项目中使用人大金仓替换mysql

文章目录 数据库连接配置调整驱动和连接字符串修改&#xff1a;用户名和密码&#xff1a; SQL 语法兼容性检查数据类型差异处理&#xff1a;函数差异&#xff1a;SQL语句客户端 SQL 交互工具 数据迁移数据库、用户移植数据迁移工具使用&#xff1a;迁移过程中的问题及解决方案 …

【DVWA】XSS(Stored)

倘若人生一马平川&#xff0c;活着还有什么意思呢。 1.XSS(Stored)(Low) 相关代码分析 trim(string,charlist) 函数移除字符串两侧的空白字符或其他预定义字符&#xff0c;预定义字符包括、\t、\n、\x0B、\r以及空格&#xff0c;可选参数charlist支持添加额外需要删除的字符…

数据分析python小工具录入产品信息到Excel

在没有后台管理系统的时候&#xff0c;有时候为了方便起见&#xff0c;想提供一个输入框让运营人员直接输入&#xff0c;然后数据就会以数据库的形式存进数据库 效果图&#xff1a; 输入用户名 输入数据 输入信息后点击添加到表格&#xff0c;检查后方便批量保存到excel …

HTML和JavaScript实现商品购物系统

下面是一个更全面的商品购物系统示例&#xff0c;包含新增商品、商品的增加删除以及结算找零的功能。这个系统使用HTML和JavaScript实现。 1.功能说明&#xff1a; 这个应用程序使用纯HTML和JavaScript实现。 包含一个商品列表和一个购物车区域。商品列表中有几个示例商品&a…

C# 探险之旅:第三节 - 有趣的变量命名

欢迎再次回到我们的C#魔法森林。今天&#xff0c;我们要一起探索一个既有趣又实用的技能——变量命名。想象一下&#xff0c;你正在为你的小精灵们&#xff08;变量&#xff09;起名字&#xff0c;好的名字不仅能让它们更容易被识别&#xff0c;还能让你的魔法书&#xff08;代…

JavaEE 【知识改变命运】04 多线程(3)

文章目录 多线程带来的风险-线程安全线程不安全的举例分析产出线程安全的原因&#xff1a;1.线程是抢占式的2. 多线程修改同一个变量&#xff08;程序的要求&#xff09;3. 原子性4. 内存可见性5. 指令重排序 总结线程安全问题产生的原因解决线程安全问题1. synchronized关键字…

ASP.NET|日常开发中连接Sqlite数据库详解

ASP.NET&#xff5c;日常开发中连接Sqlite数据库详解 前言一、安装和引用相关库1.1 安装 SQLite 驱动1.2 引用命名空间 二、配置连接字符串2.1 连接字符串的基本格式 三、建立数据库连接3.1 创建连接对象并打开连接 四、执行数据库操作4.1 创建表&#xff08;以简单的用户表为例…

DS记录中

DataX/hdfswriter/doc/hdfswriter.md at master alibaba/DataX GitHub DataX 写入文档 https://dolphinscheduler.apache.org/zh-cn/docs/3.2.2/architecture/task-structure DS文档 DS 项目举例 流程 数据库(Datax) -> ODS &#xff08;shell&#xff09;->ADS(…