【论文阅读】PRIS: Practical robust invertible network for image steganography

news2025/2/25 4:20:02

内容简介

论文标题:PRIS: Practical robust invertible network for image steganography

作者:Hang Yang, Yitian Xu∗, Xuhua Liu∗, Xiaodong Ma∗

发表时间:2024年4月11日 Engineering Applications of Artificial Intelligence

关键字:图像隐写、稳健、深度学习、可逆神经网络

阅读目的

阅读方式:泛读

摘要

主要工作:为了提高图像隐写的鲁棒性,本文提出了一种实用的图像隐写鲁棒性可逆网络(PRIS),它基于可逆神经网络,在提取过程前后分别放置两个增强模块,采用三步训练策略。

代码 : 代码可在https://github.com/yanghangAI/PRIS上获得,我们的模型在http://yanghang.site/hide/上的实际演示。

引言

提出当前图像隐写一个显著的问题是图像隐写的鲁棒性

显著限制是对舍入误差的忽略,这个问题的出现是由于深度学习框架中使用的数值精度(通常是32位)和图像的标准位深度(通常是8位)之间的差异。

基准模型:HiNet

主要贡献

  1. 提出了一种具有两个增强模块的鲁棒可逆神经网络,用于多种攻击下的图像隐写。
  2. 我们在训练过程中引入了三步训练策略,以获得更好的鲁棒性。
  3. 考虑舍入误差,提出了一种梯度近似函数来解决舍入运算引起的不可导问题。
  4. 实验结果表明,本文提出的PRIS在鲁棒性和实用性方面都优于现有的先进方法,特别是在容器图像存在细微扭曲和不可避免的舍入误差时。

相关工作

基于传统的图像隐写

传统的图像隐写是在空间域和频域,空间域的方法为最小有效位(LSB)、像素值查分(PVD);频域的方法为离散余弦变换(DCT)、离散傅里叶变换(DFT)、离散小波变换(DWT)等

基于深度学习的图像隐写

HiDDeN:一个创新的端到端基于深度学习的图像隐写框架。它使用一个包含两个卷积神经网络(cnn)和一个对抗网络的编码器-解码器架构,以改进编码器损失,通过在训练期间调整参数,在容量、保密性和噪声鲁棒性之间实现灵活的权衡。

Ssgan:将深度学习与传统的 LSB 结合,通过生成对抗网络(Gans)生成封面图像,LSB 嵌入和提取信息。

潜在向量优化的生成图像隐写

基于去噪扩散模型的新型隐写方法

可逆神经网络

学习数据分布和潜在分布中的映射,INN 在同一网络中执行前向和后向传播,同时充当特征编码器和图像生成器。

CycleGan:使用两个生成器和一个周期损失实现双向映射

其他的 GLow、i-ResNet 是做出了改进

将 INN 引入图像隐写,获取到了最先进的 SOTA 效果

但是面对的一个问题是没有解决舍入误差,本文为解决这些问题,在提取前后分别加入了预增强和后增强模块,提出一个梯度近似函数解决舍入误差的不可微问题。

方法

整体结构

图一:PRIS的框架包括可逆块和增强模块两大部分,其中DWT和IWT分别表示离散小波变换和逆小波变换。左边块是嵌入过程,右边块是提取过程。z 是服从正态分布的随机噪声。

这个是整个模型的结构图, x h , x s x_h,x_s xh,xs 先通过离散小波变换变换到频域,通过可逆块输出两幅图像,对于 x h x_h xh 将会进一步经过 IWT 转换为空间域,输出为 x c x_c xc x c x_c xc会收到不同的攻击,然后变为 x d x_d xd,然后经过预增强模块、DWT、可逆块,同时,得到高斯分布图像 z 也被输入到可逆块中,最终得到两幅图像,在频域上显示并提取秘密图像,z 经过 IWT 得到 解密后的 x e x_e xe.

可逆块

增强模块

预增强模块以变形后的容器图像为输入,输出增强后的容器图像,便于通过可逆块进行提取。后增强模块将提取的图像作为输入,输出与原始秘密图像更相似的增强提取图像。

损失函数

PSNR:封面和容器、秘密和揭示图象之间,目的是最大化 PSNR

引入了两个损失

总损失为两种损失的加权和

作者提到,如果过于关注容器的损失而不关注揭示秘密图像的损失,则会出现无限大的 PSNR-C,极低的 PSNR-S,这个和我上次自己训练的结果,容器很模糊,但是秘密图像可以看出来有些类似,可能是上次我的损失函数设置的有问题。

未来解决这种问题,所以使用损失的加权和来作为总损失

3 步训练策略

将训练过程分为三个不同的阶段,目的是找到可逆和不可逆的平衡点

步骤1:预训练可逆模块。在这一步中,只启用可逆块,增强模块不进行前向和后向计算。这将保证整个网络的可逆性。

步骤2:预训练增强模块。在此步骤中,PRIS的所有组件都被激活,但可逆块的参数保持固定。这种方法旨在适度降低可逆性,确保它不会损害整体性能。

步骤3:微调可逆模块和增强模块。

在此步骤中,所有参数都被启用,并将在反向传播期间更新。进一步提高了系统的鲁棒性。

舍入误差为什么重要

实验

实验细节

数据集:DIV2K

输入的图像被裁剪为 224*224

对于训练数据,使用随机裁剪来更好的泛化;对于测试数据集,使用中心裁剪避免评估中的随机性,每个阶段用 1600 个 epoch,使用 Adam 优化器,初始学习率分别为 1 0 − 4.5 和 1 0 − 5.5 10^{-4.5}和10^{-5.5} 104.5105.5

消融实验

增强模块、三步训练策略和领域选择的有效性

添加了的模块分别和第一行对比,确实是有提升,但是数值上的提升并不是很大

空间域还是频域

频域隐藏图像比在空间域隐藏图像更有效。然而,频域仍然是增强模块的更好选择,因此我们进行了不同域的消融研究

计算舍入误差的不同方法

误差参数的影响

将舍入函数的梯度设置为0的视觉结果,通过忽略提取任务实现了较高的PSNR-C,本质上是在尝试学习一个相同的映射函数

与其他方法比较

总之,我们的PRIS在一系列攻击中表现出卓越的性能,与其他方法相比,它是最健壮的方法。值得注意的是,当受到高斯噪声或不可避免的舍入攻击等微妙攻击时,与之竞争的SOTA方法的性能会急剧下降,而PRIS在这些条件下保持了明显更好的恢复能力。

实践实验

给出了网站,可以自己上传进行测试

跨域实验

  1. ImageNet:此数据集包含1,000张图像,从ImageNet 2012数据集的验证分割的每个类中随机选择一张。

  2. COCO:该数据集包含来自COCO 2017验证分割的5000张图像。

  3. VOC:该数据集包含来自VOC-2007验证分割的2,510张图像。

结论

本文提出了一种实用的鲁棒可逆图像隐写网络——PRIS。它将两个增强模块和一个三步训练策略集成到可逆神经网络中。而且,以往的研究忽略了舍入失真;然而,在实际操作中不可避免,其不可微性给训练带来了挑战。因此,本文提出GAF来解决这个问题,并在其他失真之前应用舍入失真,这更现实。此外,尽管在224 × 224像素的分辨率上进行训练,PRIS在实践中可以适应任何分辨率。这些特征赋予PRIS在鲁棒性和实用性方面优于现有SOTA方法的能力,特别是在面对微妙的攻击和不可避免的舍入误差时

我的理解

基准模型是在 hinet 上,然后加了几个模块用来增强这个稳健性,论文的网络结构并没有很详细的给出,但是给出了代码,

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2258572.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

day2 数据结构 结构体的应用

思维导图 小练习: 定义一个数组,用来存放从终端输入的5个学生的信息【学生的信息包含学生的姓名、年纪、性别、成绩】 1>封装函数 录入5个学生信息 2>封装函数 显示学生信息 3>封装函数 删除第几个学生信息,删除后调用显示学…

特征交叉-CAN学习笔记代码解读

一 核心模块coaction 对于每个特征对(feature_pairs)weight, bias 来自于P_inductionP_fead是MLP的input 举个例子:如果是用户ID和产品ID的co-action,且产品ID是做induction,用户ID是做feed。 step1 用户ID/产品ID都先形成一个向量&#xf…

EfficientNet与复合缩放理论(Compound Scaling Theory) 详解(MATLAB)

1.EfficientNet网络与模型复合缩放 1.1 EfficientNet网络简介 1.1.1 提出背景、动机与过程 EfficientNet是一种高效的卷积神经网络(CNN),由Google的研究团队Tan等人在2019年提出。EfficientNet的设计目标是提高网络的性能,同时减…

SQL语句在MySQL中如何执行

MySQL的基础架构 首先就是客户端,其次Server服务层,大多数MySQL的核心服务都在这一层,包括连接、分析、优化、缓存以及所有的内置函数(时间、日期、加密函数),所有跨存储引擎功能都在这一层实现&#xff1…

开源低代码平台-Microi吾码-表单控件数据源绑定配置

表单控件数据源绑定配置 平台简介普通数据源数据源引擎Sql数据源通过其它字段来动态绑定数据源关于绑定数据源后的显示字段和存储字段 平台简介 技术框架:.NET8 Redis MySql/SqlServer/Oracle Vue2/3 Element-UI/Element-Plus平台始于2014年(基于Av…

Y3编辑器文档4:触发器1(对话、装备、特效、行为树、排行榜、不同步问题)

文章目录 一、触发器简介1.1 触发器界面1.2 ECA语句编辑及快捷键1.3 参数设置1.4 变量设置1.5 实体触发器1.6 函数库与触发器复用 二、触发器的多层结构2.1 子触发器(在游戏内对新的事件进行注册)2.2 触发器变量作用域2.3 复合条件2.4 循环2.5 计时器2.6…

Redis原理—4.核心原理摘要

大纲(9870字) 1.Redis服务器的Socket网络连接建立 2.Redis多路复用监听与文件事件模型 3.基于队列串行化的文件事件处理机制 4.完整的Redis Server网络通信流程 5.Redis串行化单线程模型为什么能高并发 6.Redis内核级请求处理流程与原理 7.Redis通信协议与内核级请求数据…

轻量级日志管理平台:Grafana Loki搭建及应用(详细篇)

前言 Grafana Loki是Grafana Lab团队提供的一个水平可扩展、高可用性、多租户的日志聚合系统,与其他日志系统不同的是,Loki最初设计的理念是为了为日志建立标签索引,而非将原日志内容进行索引。 现在目前成熟的方案基本上都是:L…

【规范一】JAVA静态代码规范

1.规范的划分 将Java代码规范分为 风格规范 和 质量规范 ,主要是因为这两种规范关注的方面不同,各自解决的问题也不同。下面详细解释为什么需要将代码规范分为这两种 1.1 风格规范(Coding Style Guidelines) 风格规范主要关注代码…

Angular由一个bug说起之十二:网页页面持续占用CPU过高

随着网络日益发达,网页的内容也更加丰富,形式也更加多样化。而随之而来的性能问题也不容小觑。这篇文章我会根据我在实践中遇到的一个问题来总结,我在面对性能问题的一些解决步骤,希望能对大家有所启发。 查找问题原因 我接触的…

WordPress全能CDN插件_自动刷新预热_缓存优化|国内国外集成CDN配置

WordPress全网独家原创CDN插件 自动刷新预热 缓存优化 国内国外集成CDN配置 支持白山云 cdnfly Cloudflare PS:目前国内集成了CDNfly,白山云国外集成了Cloudflare,更新手动刷新,全站刷新,优化提交线程,根据网友建议适配阿里云,le…

唇形同步视频生成工具:Wav2Lip

一、模型介绍 今天介绍一个唇形同步的工具-Wav2Lip;Wav2Lip是一种用于生成唇形同步(lip-sync)视频的深度学习算法,它能够根据输入的音频流自动为给定的人脸视频添加准确的口型动作。 (Paper) Wav2Lip模型…

【汽车】-- 燃油发动机3缸和4缸

3缸和4缸燃油发动机是小轿车常见的发动机配置。以下从结构特点、性能、经济性等方面对两者进行对比,并分析优缺点及使用注意事项: 1. 结构与运行原理 3缸发动机 特点:少一个气缸,内部零部件更少,整体结构更紧凑。优点…

[NeurlPS 2022] STaR 开源代码实现解读

STaR 方法代码开源,这里给出一个中文代码解读地址:repo入口点:iteration_train.py;关键代码:device_train.py, device_inference.py, and create_finetune_tfrecords.py;基于 JAX、RAY,在 Googl…

欢迪迈手机商城设计与实现

文末获取源码和万字论文,制作不易,感谢点赞支持。 题目:欢迪迈手机商城设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管…

【鸿蒙实战开发】数据的下拉刷新与上拉加载

本章介绍 本章主要介绍 ArkUI 开发中最常用的场景下拉刷新, 上拉加载,在本章中介绍的内容在实际开发过程当中会高频的使用,所以同学们要牢记本章的内容。下面就让我们开始今天的讲解吧! List 组件 在 ArkUI 中List容器组件也可以实现数据滚动的效果&a…

UnityShaderLab 实现程序化形状(一)

1.实现一个长宽可变的矩形: 代码: fixed4 frag (v2f i) : SV_Target{return saturate(length(saturate(abs(i.uv - 0.5)-0.13)))/0.03;} 2.实现一个半径可变的圆形: 代码: fixed4 frag (v2f i) : SV_Target{return (distance(a…

高阶数据结构--B树B+树实现原理B树模拟实现--Java

目录 一、B-树概念 二、B-树插入分析 1.用序列{53, 139, 75, 49, 145, 36, 101}构建B树的过程如下: 2.插入过程总结 三、B树插入实现 四、B树 1.B树概念 2.B树的特性 五、B树应用 1.索引 2.Mysql索引 3.InnoDB 一、B-树概念 1970 年, R.Bayer 和…

网络安全——防火墙

基本概念 防火墙是一个系统,通过过滤传输数据达到防止未经授权的网络传输侵入私有网络,阻止不必要流量的同时允许必要流量进入。防火墙旨在私有和共有网络间建立一道安全屏障,因为网上总有黑客和恶意攻击入侵私有网络来破坏,防火…

基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 多图推理

基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 多图推理 flyfish 基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_LoRA配置如何写 基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_单图推理 基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_原模型_单图推理 基于Q…