CLIP模型也能处理点云信息

news2024/12/27 8:33:14


✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨

🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。

我是Srlua小谢,在这里我会分享我的知识和经验。🎥

希望在这里,我们能一起探索IT世界的奥妙,提升我们的技能。🔮

记得先点赞👍后阅读哦~ 👏👏

📘📚 所属专栏:传知代码论文复现

欢迎访问我的主页:Srlua小谢 获取更多信息和资源。✨✨🌙🌙

​​

​​

目录

概述

模型结构

模型总览图

点云的投影

视图间适配器

演示效果

零样本投影

少样本投影

核心逻辑

使用方式

部署方式

参考文献


本文所有资源均可在该地址处获取。

概述

CLIP模型学习将图像与其在开放词汇设置中的相应文本进行匹配,获得了良好的效果,研究人员开始逐渐探索在2D中通过大规模图像文本对预训练好的模型是否能普适到3D知识中。PointCLIP在没有渲染的情况下将点云投影到多视角深度图中来编码点云,并聚合视图层面的零样本预测以实现从2D到3D的知识转移,是在低资源成本和数据体制下通过CLIP进行有效三维点云理解的一种很有前途的代替方案。

模型结构

模型总览图

  • PointCLIP模型首先将点云投影到不同视图下,形成M个深度图作为图像信息。之后采用CLIP模型,对图像信息和文本信息进行编码。计算两者的余弦相似度,得到零样本输出结果。
  • 当进行少样本输出时,设计了一个轻量级的视图间适配器来聚合多视图表示并生成自适应特征,通过微调这样的适配器并冻结所有其他的模态,PointCLIP的性能得到了很大的提高。

点云的投影

  • 为了将点云转换为CLIP可访问的表示,从多个视图生成投影图像,以消除3D和2D之间的差距。
  • 以俯视图为例,针对点云中的某个点(x,y,z),它在俯视图下的坐标为([x/z,y/z],z为深度,此时满足近大远小的特点。即z越远,物体越小,和现实生活中的照片一致)

视图间适配器

  • 对整个模型进行微调,巨大的参数和不充分的样本很容易会导致过拟合
  • 视图间适配器时一个三层感知机模型,增加该结构可以在少样本设置下进一步提高模型的性能
  • 采用残差结构将CLIP的2D知识与适配器新学习的3D少样本知识进行融合,进一步的促进了跨模态的知识转移,同时可以更好的进行视图预测。

演示效果

零样本投影

少样本投影

核心逻辑

# PointCLIP主体结构
# 目的是为了获得图像和文本之间匹配的概率是多少
def forward(self, pc, label=None): 

        # Project to multi-view depth maps
        images = self.mv_proj(pc).type(self.dtype)

        # Image features
        image_feat = self.visual_encoder(images)
        image_feat = self.adapter(image_feat)
        image_feat = image_feat / image_feat.norm(dim=-1, keepdim=True)   

        # Store for the best ckpt
        if self.store:
            self.feat_store.append(image_feat)
            self.label_store.append(label)

        # Text features
        text_feat = self.textual_encoder()
        text_feat = text_feat / text_feat.norm(dim=-1, keepdim=True)
        
        # Classification logits
        logit_scale = self.logit_scale.exp()
        logits = logit_scale * image_feat @ text_feat.t() * 1.

        return logits

# Adapter的主体结构
    def forward(self, feat):

        img_feat = feat.reshape(-1, self.num_views, self.in_features)
        res_feat = feat.reshape(-1, self.num_views * self.in_features)
        
        # Global feature
        global_feat = self.global_f(img_feat * self.fusion_ratio.reshape(1, -1, 1))
        # View-wise adapted features
        view_feat = self.view_f(global_feat)
        
        # 将全局特征和局部特征进行相加
        img_feat = view_feat * self.adapter_ratio + res_feat * (1 - self.adapter_ratio)

        return img_feat

使用方式

  1. 可视化时:修改需要读入的文件路径,可以查看不同文件下的点云形式
  2. 以零样本方式进行训练
    cd scripts
    bash zeroshot.sh
  3. 以少样本方式训练
    cd scripts
    bash fewshot.sh

部署方式

git clone https://github.com/ZrrSkywalker/PointCLIP.git
cd PointCLIP

conda create -n pointclip python=3.7
conda activate pointclip

pip install -r requirements.txt
pip install open3d
pip install opencv-python
pip install matplotlib

# Install the according versions of torch and torchvision
conda install pytorch torchvision cudatoolkit
wget https://download.pytorch.org/whl/cu116/torch-1.13.0%2Bcu116-cp37-cp37m-linux_x86_64.whl
pip install torch-1.13.0+cu116-cp37-cp37m-linux_x86_64.whl
wget https://download.pytorch.org/whl/cu116/torchvision-0.13.0%2Bcu116-cp37-cp37m-linux_x86_64.whl
pip torchvision-0.13.0+cu116-cp37-cp37m-linux_x86_64.whl


# Install the modified dassl library (no need to re-build if the source code is changed)
cd Dassl3D/
python setup.py develop

cd ..

参考文献

pointclip论文
github地址

​​

希望对你有帮助!加油!

若您认为本文内容有益,请不吝赐予赞同并订阅,以便持续接收有价值的信息。衷心感谢您的关注和支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2253306.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

关于NXP开源的MCU_boot的项目心得

MCU的启动流程细查 注意MCU上电第一个函数运行的就是Reset_Handler函数,下图是表示了这个函数做了啥事情,注意加强一下对RAM空间的段的印象,从上到下是栈,堆,.bss段,.data段。 bootloader的难点 固件完…

MySQL5.6升级MySQL5.7

升级方式介绍 08 数据库服务版本升级方法 5.6 – 5.7 – 8.0 数据库版本升级方法: Inplace-本地升级 步骤一:在同一台服务器中,需要部署高版本数据库服务实例步骤二:低版本数据库中的数据进行备份迁移,迁移到高版本…

怎么理解BeamSearch?

在大模型推理中,常会用到BeamSearch,本文就BeamSearch原理与应用理解展开讲解。 一、BeamSearch原理 Beam Search 是一种启发式搜索算法,常用于自然语言处理(NLP)和其他需要生成序列的任务中,比如机器翻译…

shodan2-批量查找CVE-2019-0708漏洞

声明! 学习视频来自B站up主 泷羽sec 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无关&#…

SciPy Optimize和 CVXPY对比

CVXPY和SciPy Optimize模块都是在Python中解决优化问题的强大工具,但它们是为不同类型的问题而设计的,具有不同的优点和局限性。本文对比两者的优缺点,阐述各自的应用场景,同时解释常用求解器,并给出实际示例进行说明。…

DevOps工程技术价值流:GitLab源码管理与提交流水线实践

在当今快速迭代的软件开发环境中,DevOps(开发运维一体化)已经成为提升软件交付效率和质量的关键。而GitLab,作为一个全面的开源DevOps平台,不仅提供了强大的版本控制功能,还集成了持续集成/持续交付(CI/CD)…

Android Studio 右侧工具栏 Gradle 不显示 Task 列表

问题: android studio 4.2.1版本更新以后AS右侧工具栏Gradle Task列表不显示,这里需要手动去设置 解决办法: android studio 2024.2.1 Patch 2版本以前的版本设置:依次打开 File -> Settings -> Experimental 选项&#x…

Linux详解:文件权限

文章目录 前言Linux文件权限基础文件成员与三组权限字符 权限的修改修改文件所有者总结 前言 在浩瀚的操作系统世界中,Linux以其开源、灵活和强大的特性,成为了服务器、开发环境以及众多个人用户的首选。而在Linux的众多特性中,文件权限机制…

SeggisV1.0 遥感影像分割软件【源代码】讲解

在此基础上进行二次开发,开发自己的软件,例如:【1】无人机及个人私有影像识别【2】离线使用【3】变化监测模型集成【4】个人私有分割模型集成等等,不管是您用来个人学习还是公司研发需求,都相当合适,包您满…

Spark常问面试题---项目总结

一、数据清洗,你都清洗什么?或者说 ETL 你是怎么做的? 我在这个项目主要清洗的式日志数据,日志数据传过来的json格式 去除掉无用的字段,过滤掉json格式不正确的脏数据 过滤清洗掉日志中缺少关键字段的数据&#xff…

数据结构4——栈和队列

目录 1.栈 1.1.栈的概念及结构 1.2栈的实现 2.队列 2.1队列的概念及结构 2.2队列的实现 1.栈 1.1.栈的概念及结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一段称为栈顶,另一端称为…

限定符使用

正则表达式的元字符一次一般只能匹配一个位置或一个字符,如果想要匹配零个、一个或多个字符时,则需要使用限定符。限定符用于指定允许特定字符或字符集自身重复出现的次数。常用限定符如下: <asp:TextBox [^>]> 正则表达式字符类[^>]匹配除过“>”之外的任何字…

【Python】Selenium模拟在输入框里,一个字一个字地输入文字

我们平常在使用Selenium模拟键盘输入内容&#xff0c;常用的是用send_keys来在输入框上输入字&#xff1a; 基本的输入方式&#xff1a; input_element driver.find_element(By.ID, searchBox) input_element.send_keys("我也爱你") #给骚骚的自己发个骚话不过这种…

Node.js 实战: 爬取百度新闻并序列化 - 完整教程

很多时候我们需要爬取一些公开的网页内容来做一些数据分析和统计。而多数时候&#xff0c;大家会用到python &#xff0c;因为实现起来很方便。但是其实Node.js 用来爬取网络内容&#xff0c;也是非常强大的。 今天我向大家介绍一下我自己写的一个百度新闻的爬虫&#xff0c;可…

配置宝塔php curl 支持http/2 发送苹果apns消息推送

由于宝塔面板默认的php编译的curl未加入http2的支持&#xff0c;如果服务需要使用apns推送等需要http2.0的访问就会失败&#xff0c;所以重新编译php让其支持http2.0 编译方法&#xff1a; 一、安装nghttp2 git clone https://github.com/tatsuhiro-t/nghttp2.git cd nghttp…

YOLOv11 NCNN安卓部署

YOLOv11 NCNN安卓部署 之前自己在验证更换relu激活函数重新训练部署模型的时候&#xff0c;在使用ncnn代码推理验证效果很好&#xff0c;但是部署到安卓上cpu模式会出现大量的错误检测框&#xff0c;现已更换会官方默认的权重 前言 YOLOv11 NCNN安卓部署 目前的帧率可以稳定…

MeterSphere接口测试提取数组及引用

实际工作中常见的使用场景&#xff1a; 1、提取数组中某个特定值&#xff1b; $.data.groups[n].name提取特定值 2、提取数组中全部值&#xff1b; $.data.groups[*].name&#xff0c;并勾选匹配多条以提取全部值 3、提取数组中的某几个特定值&#xff1b; 如提取数组中第1个和…

【数据结构】队列的概念、结构和实现详解

本文来介绍一下数据结构中的队列&#xff0c;以及如何用C语言去模拟实现。 1.队列的概念及结构 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表。 特点&#xff1a;数据先进先出FIFO&#xff08;first in first out&#xf…

【Linux】设计文件系统(C实现)

要求&#xff1a; (1)可以实现下列几条命令 dir 列文件目录 create 创建文件 delete 删除文件 read 读文件 write 写文件 (2)列目录时要列出文件名、存取权限&#xff08;八进制&#xff09;、文件长度、时间&#xff08;创建时间&#xff0c;修改时间以及…

基于Java Springboot武汉市公交路线查询APP且微信小程序

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术&#xff1a;Html、Css、Js、Vue、Element-ui 数据库&#xff1a;MySQL 后端技术&#xff1a;Java、Spring Boot、MyBatis 三、运行环境 开发工具&#xff1a;IDEA/eclipse 微信…