【大数据学习 | 面经】Spark为什么比MR计算更快

news2024/12/4 1:24:07

1. 内存计算与数据缓存:
   - Spark支持将中间结果缓存在内存中(cache算子可以将数据缓存在内存中,避免大量的重复计算),减少对磁盘I/O的依赖。对于需要反复迭代的数据处理任务,如机器学习算法,这种特性可以极大提高效率。而Hadoop MR每次执行shuffle操作时都会将数据写入磁盘,增加了读写延迟。

2. DAG执行模型:
   - Spark采用了有向无环图(Directed Acyclic Graph, DAG)的任务调度模型,它可以将多个操作组合成一个复杂的作业流,并优化整个流程中的任务执行顺序。相比之下,MR是基于固定的两阶段(Map和Reduce)模型,无法像Spark那样灵活地进行任务间的优化。

3. 减少冗余操作:
   - Spark能够更好地消除冗余的计算步骤,例如通过其丰富的算子集合避免不必要的shuffle操作。MR由于其固有的架构,在某些情况下会强制执行额外的MapReduce阶段,即使这些阶段并不总是必要的。

4. JVM优化:
   - 在Spark中,Executor启动一次JVM后,后续的任务可以在同一个进程中以线程的方式运行,减少了频繁启动JVM带来的开销。而在MR中,每个Task都需要单独启动新的JVM实例,这导致了更高的启动成本。

5. 资源申请粒度:
   - Spark采用粗粒度的资源申请方式,即一旦申请到资源就不会轻易释放,直到整个应用程序结束。这种方式虽然可能导致资源利用率不高,但对于长时间运行的应用来说,它能提供更稳定的性能表现。相反,MR是以细粒度的方式按需申请资源,但这也意味着更多的资源管理和分配开销。

6. **高级API和库支持**:
   - Spark提供了比MR更丰富、更高层次的API,以及一系列内置的库(如MLlib、GraphX等),使得开发者可以更容易编写高效的程序。此外,这些高级抽象有助于自动优化底层实现,进一步提升了性能。

 

综上所述,Spark之所以能在很多场景下表现出优于MR的速度,是因为它结合了内存计算的优势、先进的任务调度机制、精简的操作流程、JVM级别的性能优化以及良好的开发体验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2252725.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【golang】单元测试,以及出现undefined时的解决方案

单元测试 要对某一方法进行测试时,例如如下这一简单减法函数,选中函数名后右键->转到->测试 1)Empty test file 就是一个空文件,我们可以自己写测试的逻辑 但是直接点绿色箭头运行会出问题: 找不到包。我们要在…

DVWA靶场通关——DOM型XSS漏洞

一、DOM型XSS攻击概述 DOM型XSS(DOM-based Cross-Site Scripting,DOM XSS)是一种跨站脚本攻击(XSS)的变种,它与传统的反射型XSS(Reflected XSS)或存储型XSS(Stored XSS&a…

【Unity 动画】设置跟运动(Apply Root)模型跟着动画产生位移

一、导入的动画本身必须有跟随动画产生位移或者旋转的效果 二、导入Unity后 在Unity中,根运动(Root Motion)是指动画中角色根节点的移动和旋转。根节点通常是角色的根骨骼(Root Bone),它决定了角色的整体…

Spring AI 框架介绍

Spring AI是一个面向人工智能工程的应用框架。它的目标是将Spring生态系统的设计原则(如可移植性和模块化设计)应用于AI领域,并推广使用pojo作为AI领域应用的构建模块。 概述 Spring AI 现在(2024/12)已经支持语言,图像&#xf…

C++小问题

怎么分辨const修饰的是谁 是限定谁不能被改变的? 在C中,const关键字的用途和位置非常关键,它决定了谁不能被修改。const可以修饰变量、指针、引用等不同的对象,并且具体的作用取决于const的修饰位置。理解const的规则能够帮助我们…

近几年,GIS专业的五类就业方向!

近二十几年来,地理信息科学毕业生的就业方向在不断发生变化。 早期的地理信息科学技术主要应用于政府部门,因此学生就业主要在高校、交通运输、规划勘测设计、国土、矿业、水利电力、通讯、农林、城市建设、旅游等国家政府部门或事业单位。 随着地理信…

【Maven】继承和聚合

5. Maven的继承和聚合 5.1 什么是继承 Maven 的依赖传递机制可以一定程度上简化 POM 的配置,但这仅限于存在依赖关系的项目或模块中。当一个项目的多个模块都依赖于相同 jar 包的相同版本,且这些模块之间不存在依赖关系,这就导致同一个依赖…

2、Three.js初步认识场景Scene、相机Camera、渲染器Renderer三要素

三要素之间关系: 有了虚拟场景Scene,相机录像Camera,在相机小屏幕上看到的Renderer Scene当前空间 Mesh人在场景 Camera相机录像 Renderer显示器上 首先先描述下Scene: 这个场景为三要素之一,一切需要展示的东西都需…

工厂方法模式的理解和实践

在软件开发中,设计模式是一种经过验证的解决特定问题的通用方案。工厂方法模式(Factory Method Pattern)是创建型设计模式之一,它提供了一种创建对象的接口,但由子类决定要实例化的类是哪一个。工厂方法让类的实例化推…

Vue教程|搭建vue项目|Vue-CLI2.x 模板脚手架

一、项目构建环境准备 在构建Vue项目之前,需要搭建Node环境以及Vue-CLI脚手架,由于本篇文章为上一篇文章的补充,也是为了给大家分享更为完整的搭建vue项目方式,所以环境准备部分采用Vue教程|搭建vue项目|V…

无人机主控芯片技术与算法详解!

一、无人机主控芯片核心技术 高性能CPU: 无人机需要高性能的CPU来处理复杂的飞行控制算法、图像处理和数据传输等任务。目前,无人机的CPU主要有大疆自研的飞控系统、高通提供的无人机设计平台Snapdragon Flight,以及基于开源平台APM、Px4等…

GaussDB(类似PostgreSQL)常用命令和注意事项

文章目录 前言GaussDB(类似PostgreSQL)常用命令和注意事项1. 连接到GaussDB数据库2. 查看当前数据库中的所有Schema3. 进入指定的Schema4. 查看Schema下的表、序列、视图5. 查看Schema下所有的表6. 查看表结构7. 开始事务8. 查询表字段注释9. 注意事项&a…

探索AI新世界!热门工具与学习资源免费获取

​抖知书老师推荐: 人工智能技术的迅速发展让人们既充满期待又有些迷茫。有人担忧被AI技术取代,有人却积极拥抱这场科技浪潮。无论你处于哪种心态,人工智能已经深入到我们生活的方方面面。如果你希望轻松掌握最新的AI工具与动态,…

[STM32]从零开始的STM32 FreeRTOS移植教程

一、前言 如果能看到这个教程的话,说明大家已经学习嵌入式有一段时间了。还记得嵌入式在大多数时候指的是什么吗?是的,我们所说的学习嵌入式大部分时候都是在学习嵌入式操作系统。从简单的一些任务状态机再到复杂一些的RTOS,再到最…

基于Java Springboot房屋租赁App且微信小程序

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 微信…

【docker】9. 镜像操作与实战

镜像操作案例 查找镜像 docker search busybox下载镜像 docker pull busybox:1.36.0查看镜像及列表存储位置 rootLAPTOP-H2EI4I6A:~# docker images busybox REPOSITORY TAG IMAGE ID CREATED SIZE busybox latest 517b897a6a83 2 months a…

Qt 2D绘图之三:绘制文字、路径、图像、复合模式

参考文章链接: Qt 2D绘图之三:绘制文字、路径、图像、复合模式 绘制文字 除了绘制图形以外,还可以使用QPainter::darwText()函数来绘制文字,也可以使用QPainter::setFont()设置文字所使用的字体,使用QPainter::fontInfo()函数可以获取字体的信息,它返回QFontInfo类对象…

Gooxi Eagle Stream 2U双路通用服务器:性能强劲 灵活扩展 稳定易用

人工智能的高速发展开启了飞轮效应,实施数字化变革成为了企业的一道“抢答题”和“必答题”,而数据已成为现代企业的命脉。以HPC和AI为代表的新业务就像节节攀高的树梢,象征着业务创新和企业成长。但在树梢之下,真正让企业保持成长…

图数据库 | 10、图数据库架构设计——高性能图存储架构(上)

老夫在之前的三大篇内容中,介绍了图数据库的三大组件—图计算、图存储以及图查询语言。(都归拢在图数据库原理、架构与应用这个专栏中了,感兴趣的朋友可以在去找阅读。) 接下来,老夫还将继续深化这三大组件&#xff0…

保护数据,构建信任:联邦学习与差分隐私在AI训练中的实践

文章目录 摘要引言什么是联邦学习?AI模型训练中的数据隐私挑战数据隐私面临的主要问题 联邦学习与差分隐私技术联邦学习的关键流程代码示例差分隐私技术联邦学习与差分隐私结合案例 QA环节总结参考资料 摘要 在人工智能快速发展的背景下,模型训练对数据…