说说Elasticsearch拼写纠错是如何实现的?

news2024/12/27 8:10:41

大家好,我是锋哥。今天分享关于【说说Elasticsearch拼写纠错是如何实现的?】面试题。希望对大家有帮助;

说说Elasticsearch拼写纠错是如何实现的?

1000道 互联网大厂Java工程师 精选面试题-Java资源分享网

在 Elasticsearch 中,拼写纠错(也叫做 自动纠错拼写建议)可以通过几种不同的技术来实现。主要的两种实现方法是 fuzzy 查询suggest 功能。下面是几种常用的实现方法及其原理。

1. Fuzzy 查询

fuzzy 查询是一种通过匹配“模糊”文本的查询方法,用于容忍拼写错误和输入的不精确。它基于 编辑距离(Levenshtein Distance)算法,编辑距离衡量将一个单词转换为另一个单词所需的最小操作次数(插入、删除或替换字符)。

通过 fuzzy 查询,Elasticsearch 可以容忍一定数量的拼写错误,甚至对于不完全匹配的词也能找到最接近的匹配项。

示例:

{
  "query": {
    "match": {
      "title": {
        "query": "elasticsearchh",  // 错误拼写
        "fuzziness": "AUTO"        // 自动计算模糊度
      }
    }
  }
}
  • fuzziness: 定义了允许的最大编辑距离(模糊度)。可以是一个整数值(例如 12),或者使用 "AUTO",让 Elasticsearch 自动计算。

  • prefix_length: 指定前缀的最小长度,前缀部分不能模糊匹配。

Elasticsearch 会根据模糊匹配算法,寻找与 "elasticsearchh" 最接近的文档。如果模糊度设置为 "AUTO",系统会根据查询的长度自动选择最合适的编辑距离。

2. Completion Suggester(完成建议器)

completion suggester 是 Elasticsearch 中专门用于提供自动完成建议和拼写纠错的功能。它通常用于前端实现输入提示、自动补全或纠错。

完成建议器会基于一个索引进行实时查询,提供高效的搜索建议,常用于输入框中的建议列表,能根据用户输入的部分内容提供候选词。

  • 创建一个 completion 类型字段:
PUT /my_index/_mapping
{
  "properties": {
    "suggest": {
      "type": "completion"
    }
  }
}
  • 插入数据:
POST /my_index/_doc/1
{
  "suggest": {
    "input": ["elasticsearch", "search engine", "search"]
  }
}
  • 查询建议:
POST /my_index/_search
{
  "suggest": {
    "text": "elast",
    "completion": {
      "field": "suggest",
      "size": 3
    }
  }
}

在上面的例子中,用户输入 "elast" 时,Elasticsearch 会返回与 "elasticsearch" 最接近的词作为建议。

3. Term Vectors + Custom Script

另一种拼写纠错的方式是使用 Term Vectors,它存储了每个文档中各个词项的统计信息(如词频、位置等)。你可以通过这些信息结合 自定义脚本,手动实现拼写纠错机制。

这种方式通常需要额外的计算来分析词频和拼写误差,但它提供了很大的灵活性,可以根据实际需求调整拼写纠错的规则和逻辑。

4. Edgengram 或 Ngram Tokenizer

为了实现拼写纠错和自动完成功能,可以使用 Edge NgramNgram 分词器,它们在分词时会从单词的不同位置生成子串,这些子串在用户输入部分匹配时会提供更好的候选词。

  • Edge Ngram 会从词的前缀开始生成子串。常用于前缀自动补全(例如输入框自动补全)。
  • Ngram 会从词的各个位置生成子串,适用于全词匹配,但可能会产生更多的倒排索引。

示例:

PUT /my_index
{
  "settings": {
    "analysis": {
      "tokenizer": {
        "edge_ngram_tokenizer": {
          "type": "edge_ngram",
          "min_gram": 1,
          "max_gram": 25
        }
      },
      "filter": {
        "lowercase": {
          "type": "lowercase"
        }
      },
      "analyzer": {
        "edge_ngram_analyzer": {
          "type": "custom",
          "tokenizer": "edge_ngram_tokenizer",
          "filter": ["lowercase"]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "suggest": {
        "type": "text",
        "analyzer": "edge_ngram_analyzer"
      }
    }
  }
}

上述配置会基于用户输入的前缀(例如“elas”)生成“e”,“el”,“ela”,“elas”等多个子串,进而实现高效的拼写纠错和自动完成功能。

5. Spellcheck(拼写检查)

虽然 Elasticsearch 本身并没有内建的专门拼写检查功能(像某些传统拼写检查工具一样),但你可以使用上述 fuzzy 查询、completion suggester 或结合外部拼写检查库(例如 Hunspell)来补充拼写纠错的功能。你可以通过编写定制化的插件来整合外部拼写检查引擎。

总结

Elasticsearch 的拼写纠错通常通过以下方式实现:

  1. Fuzzy 查询:通过模糊匹配容忍拼写错误,基于编辑距离来进行查询。
  2. Completion Suggester:为自动完成和拼写建议提供快速的候选项查询,适用于搜索建议和实时补全。
  3. Edge Ngram 或 Ngram 分词器:生成词的前缀或子串,支持拼写纠错和自动完成。
  4. Term Vectors 和自定义脚本:结合文档的词频和位置统计信息,手动实现拼写纠错。

这些技术可以单独使用,也可以组合使用,以实现高效、准确的拼写纠错和搜索建议功能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2251597.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何把产品3D模型放到网站上进行3D展示或3D互动?

要将产品3D模型放到网站上进行3D展示或3D互动,可以按照以下步骤进行: 一、准备3D模型 使用3D建模软件(如3ds Max、Maya、Blender、C4D等)制作好产品的3D模型。 确保3D模型的格式是网站或平台所支持的,常见的格式包括…

SpringBoot集成Flowable

一、工作流介绍 1、概念 通过计算机对业务流程的自动化管理。工作流是建立在业务流程的基础上,一个软件的系统核心根本上还是系统的业务流程,工作流只是协助进行业务流程管理。 解决的是:在多个参与者之间按照某种预定义的规则自动进行传递文…

1-1 Gerrit实用指南

注:学习gerrit需要拥有git相关知识,如果没有学习过git请先回顾git相关知识点 黑马程序员git教程 一小时学会git git参考博客 git 实操博客 1.0 定义 Gerrit 是一个基于 Web 的代码审查系统,它使用 Git 作为底层版本控制系统。Gerrit 的主要功…

鸿蒙开发:自定义一个任意位置弹出的Dialog

前言 鸿蒙开发中,一直有个问题困扰着自己,想必也困扰着大多数开发者,那就是,系统提供的dialog自定义弹窗,无法实现在任意位置进行弹出,仅限于CustomDialog和Component struct的成员变量,这就导致…

Matlab模块From Workspace使用数据类型说明

Matlab原文连接:Load Data Using the From Workspace Block 模型: 从信号来源的数据: timeseries 数据: sampleTime 0.01; numSteps 1001;time sampleTime*[0:(numSteps-1)]; time time;data sin(2*pi/3*time);simin time…

架构01-演进中的架构

零、文章目录 架构01-演进中的架构 1、原始分布式时代:Unix设计哲学下的服务探索 (1)背景 时间:20世纪70年代末到80年代初计算机硬件:16位寻址能力、不足5MHz时钟频率的处理器、128KB左右的内存转型:从…

社群赋能电商:小程序 AI 智能名片与 S2B2C 商城系统的整合与突破

摘要:本文聚焦于社群在电商领域日益凸显的关键地位,深入探讨在社群粉丝经济迅猛发展背景下,小程序 AI 智能名片与 S2B2C 商城系统如何与社群深度融合,助力电商突破传统运营局限,挖掘新增长点。通过分析社群对电商的价值…

【electron-vite】搭建electron+vue3框架基础

一、拉取项目 electron-vite 中文文档地址: https://cn-evite.netlify.app/guide/ 官网网址:https://evite.netlify.app/ 版本 vue版本:vue3 构建工具:vite 框架类型:Electron JS语法:TypeScript &…

EasyDarwin搭建直播推流服务

学习链接 easydarwin官网 - 这里看介绍 easydarwin软件下载地址 - 百度网盘 easydarwin视频 B站 文章目录 学习链接使用下载EasyDarwin压缩包,并解压到目录启动EasyDarwin点播直播easyplayer.jsapidocffmpeg推流rtsp & ffplay拉流 使用 下载EasyDarwin压缩包…

【RISC-V CPU debug 专栏 2 -- Debug Module (DM), non-ISA】

文章目录 调试模块(DM)功能必须支持的功能可选支持的功能兼容性要求规模限制Debug Module Interface (DMI)总线类型地址与操作地址空间控制机制Debug Module Interface Signals请求信号响应信号信号流程Reset Control复位控制方法全局复位 (`ndmreset`)Hart 复位 (`hartreset…

【WRF后处理】WRF模拟效果评价及可视化:MB、RMSE、IOA、R

【WRF后处理】模拟效果评价及可视化 准备工作模型评价指标Python实现代码Python处理代码:导入站点及WRF模拟结果可视化图形及评价指标参考在气象和环境建模中(如使用 WRF 模型进行模拟),模型性能评价指标是用于定量评估模拟值与观测值之间偏差和拟合程度的重要工具。 本博客…

基于JSP+MySQL的网上招聘系统的设计与实现

摘要 在这样一个经济飞速发展的时代,人们的生存与生活问题已成为当代社会需要关注的一个焦点。对于一个刚刚 踏入社会的年轻人来说,他对就业市场和形势了解的不够详细,同时对自己的职业规划也很模糊,这就导致大量的 时间被花费在…

机器学习——生成对抗网络(GANs):原理、进展与应用前景分析

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一. 生成对抗网络的基本原理二. 使用步骤2.1 对抗性训练2.2 损失函数 三. GAN的变种和进展四. 生成对抗网络的应用五. 持续挑战与未来发展方向六. 小结 前言 生…

vue.js学习(day 14)

目录 综合案例:商品列表 自定义指令 main.js(全局注册) import Vue from vue import App from ./App.vueVue.config.productionTip false// //1.全局注册指令 // Vue.directive(focus,{ // //inserted 会在 指令所在的元素,被插入到页面中时触发 /…

C++类中多线程的编码方式

问题 在C++代码中,一般的代码是需要封装在类里面,比如对象,方法等。否则就不能很好的利用C++面向对象的能力了。 但是这个方式在处理线程时会碰到一个问题。 考虑下面一个简单的场景: class demoC { public:std::thread t;int x;void threadFunc(){std::cout<<x&…

使用 Tkinter 创建一个简单的 GUI 应用程序来合并视频和音频文件

使用 Tkinter 创建一个简单的 GUI 应用程序来合并视频和音频文件 Python 是一门强大的编程语言&#xff0c;它不仅可以用于数据处理、自动化脚本&#xff0c;还可以用于创建图形用户界面 (GUI) 应用程序。在本教程中&#xff0c;我们将使用 Python 的标准库模块 tkinter 创建一…

LearnOpenGL学习(入门--变换,坐标系统,摄像机)

完整代码见&#xff1a;zaizai77/Cherno-OpenGL: OpenGL 小白学习之路 glm::mat4 trans; trans glm::rotate(trans, glm::radians(90.0f), glm::vec3(0.0, 0.0, 1.0)); trans glm::scale(trans, glm::vec3(0.5, 0.5, 0.5)); 我们把箱子在每个轴都缩放到0.5倍&#xff0c;然…

LLamafactory API部署与使用异步方式 API 调用优化大模型推理效率

文章目录 背景介绍第三方大模型API 介绍LLamafactory 部署API大模型 API 调用工具类项目开源 背景介绍 第三方大模型API 目前&#xff0c;市面上有许多第三方大模型 API 服务提供商&#xff0c;通过 API 接口向用户提供多样化的服务。这些平台不仅能提供更多类别和类型的模型…

【Leecode】Leecode刷题之路第66天之加一

题目出处 66-加一-题目出处 题目描述 个人解法 思路&#xff1a; todo代码示例&#xff1a;&#xff08;Java&#xff09; todo复杂度分析 todo官方解法 66-加一-官方解法 方法1&#xff1a;找出最长的后缀9 思路&#xff1a; 代码示例&#xff1a;&#xff08;Java&#…

uniapp-vue2引用了vue-inset-loader插件编译小程序报错

报错信息 Error: Vue packages version mismatch: - vue3.2.45 (D:\qjy-myApp\admin-app\node_modules\vue\index.js) - vue-template-compiler2.7.16 (D:\qjy-myApp\admin-app\node_modules\vue-template-compiler\package.json) This may cause things to work incorrectly.…