浅谈——深度学习和马尔可夫决策过程

news2024/11/29 7:57:45

        深度学习是一种机器学习方法,它通过模拟大脑的神经网络来进行数据分析和预测。它由多层“神经元”组成,每一层从数据中提取出不同的特征。多层次的结构使得深度学习模型可以捕捉到数据中的复杂关系,特别适合处理图片、语音等复杂数据。

        马尔可夫决策过程(MDP)是一种数学框架,用于描述决策过程,特别是在环境中存在不确定性的情况下。在MDP中,一个智能体(比如机器人)在一个状态下执行某个动作,进而移动到另一个状态,并获得相应的奖励。它有一个很重要的特性,叫做“马尔可夫性”,意思是智能体当前的决定只取决于当前的状态,而与之前的状态无关。MDP常用于强化学习中,帮助智能体通过试错学习最优策略。


深度学习的原理

        深度学习的核心是神经网络。神经网络可以看成一组“神经元”组成的网络结构,每个神经元模拟人脑中的神经细胞。神经网络通过层层计算,将输入数据(如图像、文本)转化为可以预测输出的特征。

        每层神经网络通常包含多个神经元,这些神经元通过特定的权重和偏置来影响输入数据的特征提取过程。通过反向传播算法,网络的权重不断调整,以便在输出端实现最小的预测误差

        示例应用:图像分类,如用神经网络区分猫和狗的图片。下方是一个简单的示例代码,通过深度学习模型来分类手写数字:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 数据预处理
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True)

# 定义神经网络模型
class SimpleNN(nn.Module):
    def __init__(self):
        super(SimpleNN, self).__init__()
        self.fc1 = nn.Linear(28*28, 128)  # 输入层到隐藏层
        self.fc2 = nn.Linear(128, 64)     # 隐藏层
        self.fc3 = nn.Linear(64, 10)      # 输出层
        
    def forward(self, x):
        x = x.view(-1, 28*28)
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 训练模型
model = SimpleNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

for epoch in range(10):  # 训练10个周期
    for images, labels in train_loader:
        optimizer.zero_grad()
        output = model(images)
        loss = criterion(output, labels)
        loss.backward()
        optimizer.step()
print("训练完成")

马尔可夫决策过程(MDP)的原理

        马尔可夫决策过程是描述决策环境的一种框架,特别适合那些具有随机性和连续状态的环境。一个典型的MDP包括:

  • 状态(S):表示环境的当前情况。
  • 动作(A):智能体可以执行的动作。
  • 奖励(R):每次执行动作后得到的反馈。
  • 转移概率(P):从一个状态转移到另一个状态的概率。

        MDP的“马尔可夫性”意味着下一个状态只依赖于当前状态和动作,而与之前的状态无关。这个性质使得我们可以用动态规划或强化学习来求解最优策略。

        示例应用:简单的迷宫游戏。假设有一个机器人要在迷宫中找到出口,迷宫的每个位置都是一个状态,机器人可以选择上、下、左、右四个方向作为动作,每次移动获得相应的奖励值。

        以下代码是一个简单的基于MDP的迷宫寻路示例,用Q学习算法来实现。

import numpy as np

# 定义迷宫的奖励矩阵(5x5网格),终点为(4,4)位置
rewards = np.zeros((5, 5))
rewards[4, 4] = 10  # 给终点设置一个较高的奖励

# 初始化Q值表
Q = np.zeros((5, 5, 4))  # 4个动作:上、下、左、右

# Q学习参数
alpha = 0.1       # 学习率
gamma = 0.9       # 折扣因子
epsilon = 0.1     # 探索率

# 获取当前状态的可能动作
def get_possible_actions(state):
    actions = []
    row, col = state
    if row > 0: actions.append(0)  # 上
    if row < 4: actions.append(1)  # 下
    if col > 0: actions.append(2)  # 左
    if col < 4: actions.append(3)  # 右
    return actions

# 通过动作更新状态
def take_action(state, action):
    row, col = state
    if action == 0 and row > 0: row -= 1
    elif action == 1 and row < 4: row += 1
    elif action == 2 and col > 0: col -= 1
    elif action == 3 and col < 4: col += 1
    return (row, col)

# Q学习主循环
for episode in range(1000):
    state = (0, 0)
    while state != (4, 4):  # 当状态不是终点时
        if np.random.rand() < epsilon:  # 探索
            action = np.random.choice(get_possible_actions(state))
        else:  # 利用
            action = np.argmax(Q[state[0], state[1], :])
        
        # 更新Q值
        new_state = take_action(state, action)
        reward = rewards[new_state]
        best_next_action = np.argmax(Q[new_state[0], new_state[1], :])
        Q[state[0], state[1], action] += alpha * (reward + gamma * Q[new_state[0], new_state[1], best_next_action] - Q[state[0], state[1], action])
        state = new_state

print("训练完成的Q值表:")
print(Q)

        在这个示例中,Q表即为迷宫中每个状态在不同动作下的奖励累积值。通过1000个回合的训练,Q值表逐步逼近最优策略。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2249610.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

命令行使用ssh隧道连接远程mysql

本地电脑A 跳板机B 主机2.2.2.2 用户名 B ssh端口号22 登录密码bbb 远程mysql C 地址 3.3.3.3 端口号3306 用户名C 密码ccc A需要通过跳板机B才能访问C; navicat中配置ssh可以实现在A电脑上访问C 如何实现本地代码中访问C呢? # 假设本地使…

Vatee万腾平台:以数字之名,筑企业未来之路

在当今这个瞬息万变的数字化时代&#xff0c;企业若想在激烈的市场竞争中脱颖而出&#xff0c;就必须紧跟时代步伐&#xff0c;实现全面数字化转型。而Vatee万腾平台&#xff0c;正是这样一款能够帮助企业迈向数字化未来的强大工具。 Vatee万腾平台&#xff0c;作为数字化转型…

深度学习——损失函数与BP算法

一、损失函数 1. 线性回归损失函数 1.1 MAE损失 MAE&#xff08;Mean Absolute Error&#xff0c;平均绝对误差&#xff09;通常也被称为 L1-Loss&#xff0c;通过对预测值和真实值之间的绝对差取平均值来衡量他们之间的差异。MAE的公式如下&#xff1a; 其中&#xff1a; 是…

机器学习-决策树(ID3算法及详细计算推导过程)

决策树是一种基于树结构进行决策的机器学习算法 &#xff0c;以下是关于它的详细介绍&#xff1a; 1.基本原理 决策树通过一系列的条件判断对样本进行分类或预测数值。它从根节点开始&#xff0c;根据不同的属性值逐步将样本划分到不同的分支&#xff0c;直到到达叶节点&…

【AI系统】LLVM 架构设计和原理

LLVM 架构设计和原理 在上一篇文章中&#xff0c;我们详细探讨了 GCC 的编译过程和原理。然而&#xff0c;由于 GCC 存在代码耦合度高、难以进行独立操作以及庞大的代码量等缺点。正是由于对这些问题的意识&#xff0c;人们开始期待新一代编译器的出现。在本节&#xff0c;我们…

浅谈网络 | 应用层之HTTPS协议

目录 对称加密非对称加密数字证书HTTPS 的工作模式重放与篡改 使用 HTTP 协议浏览新闻虽然问题不大&#xff0c;但在更敏感的场景中&#xff0c;例如支付或其他涉及隐私的数据传输&#xff0c;就会面临巨大的安全风险。如果仍然使用普通的 HTTP 协议&#xff0c;数据在网络传输…

基于 JNI + Rust 实现一种高性能 Excel 导出方案(上篇)

每个不曾起舞的日子&#xff0c;都是对生命的辜负。 ——尼采 一、背景&#xff1a;Web 导出 Excel 的场景 Web 导出 Excel 功能在数据处理、分析和共享方面提供了极大的便利&#xff0c;是许多 Web 应用程序中的重要功能。以下是一些典型的场景&#xff1a; 数据报表导出&am…

最新Linux下使用conda配置Java23或17保姆教程(附赠安装包)

随着技术的不断进步&#xff0c;越来越多的开发者开始在Linux环境下进行Java应用的开发。Java 17作为长期支持版本&#xff08;LTS&#xff09;&#xff0c;提供了许多新特性和性能改进。当然现在最新的是Java23&#xff0c;这个还作为实验版本未广泛使用。对于需要管理多个编程…

RHEL7+Oracle11.2 RAC集群-多路径(multipath+udev)安装步骤

RHEL7Oracle11.2RAC集群-多路径&#xff08;multipathudev&#xff09;安装 配置虚拟存储 使用StarWind Management Console软件&#xff0c;配置存储 dggrid1: 1g*3 Dggrid2: 1g*3 Dgsystem: 5g*1 系统表空间&#xff0c;临时表空间&#xff0c;UNDO&#xff0c;参数文件…

PyTorch 模型转换为 ONNX 格式

PyTorch 模型转换为 ONNX 格式 在深度学习领域&#xff0c;模型的可移植性和可解释性是非常重要的。本文将介绍如何使用 PyTorch 训练一个简单的卷积神经网络&#xff08;CNN&#xff09;来分类 MNIST 数据集&#xff0c;并将训练好的模型转换为 ONNX 格式。我们还将讨论 PTH …

VM Virutal Box的Ubuntu虚拟机与windows宿主机之间设置共享文件夹(自动挂载,永久有效)

本文参考如下链接 How to access a shared folder in VirtualBox? - Ask Ubuntu &#xff08;1&#xff09;安装增强功能&#xff08;Guest Additions&#xff09; 首先&#xff0c;在网上下载VBoxGuestAdditions光盘映像文件 下载地址&#xff1a;Index of http://…

CA系统(file.h---申请认证的处理)

#pragma once #ifndef FILEMANAGER_H #define FILEMANAGER_H #include <string> namespace F_ile {// 读取文件&#xff0c;返回文件内容bool readFilename(const std::string& filePath);bool readFilePubilcpath(const std::string& filePath);bool getNameFro…

【Git】Git 命令参考手册

目录 Git 命令参考手册1. 创建仓库1.1 创建一个新的本地仓库1.2 克隆一个仓库1.3 克隆仓库到指定目录 2. 提交更改2.1 显示工作目录中已修改的文件&#xff0c;准备提交2.2 将文件添加到暂存区&#xff0c;准备提交2.3 将所有已修改的文件添加到暂存区&#xff0c;准备提交2.4 …

【Linux系列】Chrony时间同步服务器搭建完整指南

1. 简介 Chrony是一个用于Linux系统的高效、精准的时间同步工具&#xff0c;通常用于替代传统的NTP&#xff08;Network Time Protocol&#xff09;服务。Chrony不仅在系统启动时提供快速的时间同步&#xff0c;还能在时钟漂移较大的情况下进行及时调整&#xff0c;因此广泛应…

数据库日志

MySQL中有哪些日志 1&#xff0c;redo log重做日志 redo log是物理机日志&#xff0c;因为它记录的是对数据页的物理修改&#xff0c;而不是SQL语句。 作用是确保事务的持久性&#xff0c;redo log日志记录事务执行后的状态&#xff0c;用来恢复未写入 data file的已提交事务…

【vue for beginner】Vue该怎么学?

&#x1f308;Don’t worry , just coding! 内耗与overthinking只会削弱你的精力&#xff0c;虚度你的光阴&#xff0c;每天迈出一小步&#xff0c;回头时发现已经走了很远。 vue2 和 vue3 Vue2现在正向vue3逐渐更新中&#xff0c;官方vue2已经不再更新。 这个历程和当时的pyt…

【Ubuntu 24.04】How to Install and Use NVM

参考 下载 curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash激活 Activate NVM: Once the installation script completes, you need to either close and reopen the terminal or run the following command to use nvm immediately. exp…

SeggisV1.0 遥感影像分割软件【源代码】讲解

在此基础上进行二次开发&#xff0c;开发自己的软件&#xff0c;例如&#xff1a;【1】无人机及个人私有影像识别【2】离线使用【3】变化监测模型集成【4】个人私有分割模型集成等等&#xff0c;不管是您用来个人学习 还是公司研发需求&#xff0c;都相当合适&#xff0c;包您满…

Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型

往期精彩内容&#xff1a; Python-凯斯西储大学&#xff08;CWRU&#xff09;轴承数据解读与分类处理 Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客 Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客 Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客 三十多个开源…

使用docker搭建hysteria2服务端

源链接&#xff1a;https://github.com/apernet/hysteria/discussions/1248 官网地址&#xff1a;https://v2.hysteria.network/zh/docs/getting-started/Installation/ 首选需要安装docker和docker compose 切换到合适的目录 cd /home创建文件夹 mkdir hysteria创建docke…