【AI系统】LLVM 架构设计和原理

news2024/11/29 7:38:15

LLVM 架构设计和原理

在上一篇文章中,我们详细探讨了 GCC 的编译过程和原理。然而,由于 GCC 存在代码耦合度高、难以进行独立操作以及庞大的代码量等缺点。正是由于对这些问题的意识,人们开始期待新一代编译器的出现。在本节,我们将深入研究 LLVM 的架构设计和原理,以探索其与 GCC 不同之处。

LLVM 发展历程

在早期的 Apple MAC 电脑选择使用 GNU 编译器集合(GCC)作为官方编译器。尽管 GCC 在开源世界中表现良好,但苹果对编译工具提出了更高要求。苹果在增强 Objective-C 和 C 语言方面投入了大量努力,但 GCC 开发者对苹果在 Objective-C 支持方面的努力表示不满。因此,苹果基于 GCC 分为两个分支进行独立开发,导致苹果的编译器版本明显落后于官方 GCC 版本。

在这里插入图片描述

另一方面,GCC 的代码过于耦合,难以独立开发。随着版本更新,代码质量逐渐下降,而 GCC 无法以模块化方式调用实现 Apple 渴望的更好集成开发环境支持,这限制了 Apple 在编译器领域的发展。

面对这一系列问题,苹果一直寻找高效、模块化和更自由的开源替代方案。最终,苹果聘请了编译器领域的专家克里斯·拉特纳来领导 LLVM 项目的实现,标志着 LLVM 编译器的诞生。

在这里插入图片描述

LLVM 项目起源于 2000 年伊利诺伊大学厄巴纳-香槟分校的维克拉姆·艾夫(Vikram Adve)和克里斯·拉特纳(Chris Lattner)的研究,旨在为所有静态和动态语言创建动态编译技术。LLVM 是以 BSD 许可证开发的开源软件。2005 年,苹果公司雇用了克里斯·拉特纳及其团队为 macOS 和 iOS 开发工具,LLVM 成为了这些平台开发工具的一部分。

项目最初被命名为低级虚拟机(Low Level Virtual Machine)的首字母缩写。然而,随着 LLVM 项目的发展,该缩写引起了混淆,因为课程范围不仅局限于创建虚拟机。随着 LLVM 发展壮大,它成为了许多编译工具和低级工具技术的统称,这使得缩写变得不再合适。于是开发者决定摒弃缩写的含义,现在 LLVM 已经成为一个品牌,用于指代 LLVM 项目下的所有子课程,包括 LLVM 中介码(LLVM IR)、LLVM 调试工具、LLVM C++标准库等。

从 9.0.0 版本开始,LLVM 改用带有 LLVM 额外条款的 Apache 许可证 2.0。自 2019 年 10 月起,LLVM 项目的代码存储已正式迁移到 GitHub。

LLVM 项目已经迅速发展成为一个庞大的编译器工具集合。LLVM 激发了许多人为多种编程语言开发新的编译器,其中最引人注目的之一是 Clang。作为一个新的编译器,Clang 提供对 C、Objective-C 和 C++ 的支持,并且得到了苹果公司的大力支持。Clang 的目标是取代 GCC 在系统中的 C 和 Objective-C 编译器,它能够更轻松地集成到现代开发环境(IDE)中,并且支持线程的更好处理。从 Clang 3.8 版本开始,它还开始支持 OpenMP。GCC 在 Objective-C 方面的发展已经停滞,苹果已经将其支持转移到其他维护分支上。

在 2021 年 jetbrains 开发者调查中表示 GCC 编译器拥有 78%的用户使用率,Clang 编译器有 43% 的用户使用率。

在这里插入图片描述

由于 LLVM 对产业的重大贡献,计算机协会在 2012 年授予维克拉姆·艾夫、克里斯·拉特纳和 Evan ChengACM 软件系统奖。

LLVM 架构特点

LLVM 架构具有独立的组件和库化的特点,使得前端和后端工程师能够相对独立地进行工作,从而提高了开发效率和代码维护性。其核心在于中间表示(IR),通过统一且灵活的 IR 实现了对不同编程语言和目标平台的支持。优化器能够将 IR 转换为高效的形式,再由后端生成目标平台的机器码。这种设计使得 LLVM 具有适应不同编程需求和硬件架构的灵活性和高性能,为软件开发提供了强大的支持。

LLVM 组件独立性

LLVM 具有一个显著的特点,即其组件的独立性和库化架构。在使用 LLVM 时,前端工程师只需实现相应的前端,而无需修改后端部分,从而使得添加新的编程语言变得更加简便。这是因为后端只需要将中间表示(IR)翻译成目标平台的机器码即可。

对于后端工程师而言,他们只需将目标硬件的特性如寄存器、硬件调度以及指令调度与 IR 进行对接,而无需干涉前端部分。这种灵活的架构使得编译器的前端和后端工程师能够相对独立地进行工作,从而极大地提高了开发效率和维护性。

在 LLVM 中,IR 扮演着至关重要的角色。它是一种类似汇编语言的底层语言,但具有强类型和精简指令集的特点(RISC),并对目标指令集进行了抽象。例如,在 IR 中,目标指令集的函数调用惯例会被抽象为 call 和 ret 指令,并使用明确的参数。

LLVM 支持三种不同的 IR 表达形式:人类可读的汇编形式、在 C++ 中的对象形式以及序列化后的 bitcode 形式。这种多样化的表达形式使得开发人员更好地理解和处理 IR,从而实现更加灵活和高效的编译工作。通过 IR 的抽象和统一,LLVM 极大地推动了编译体系的创新,为编程语言的快速开发和跨平台支持提供了强大的基础。

LLVM 中间表达

LLVM 提供了一套适用于编译器系统的中间语言(Intermediate Representation,IR),并围绕这个中间语言进行了大量的变换和优化。经过这些变换和优化,IR 可以被转换为目标平台相关的汇编语言代码。

与传统 GCC 的前端直接对应于后端不同,LLVM 的 IR 是统一的,可以适用于多种平台,进行优化和代码生成。

根据 2011 年的测试结果,LLVM 的性能在运行时平均比 GCC 低 10%。2013 年的测试显示,LLVM 能够编译出与 GCC 性能相近的执行代码。

GCC:

在这里插入图片描述

LLVM:

在这里插入图片描述

LLVM IR 的优点包括:

  1. 更独立:LLVM IR 设计为可在编译器之外的任意工具中重用,使得轻松集成其他类型的工具,如静态分析器和插桩器成为可能。

  2. 更正式:拥有明确定义和规范化的 C++ API,使得处理、转换和分析变得更加便捷。

  3. 更接近硬件:LLVM IR 提供了类似 RISCV 的模拟指令集和强类型系统,实现了其“通用表示”的目标。具有足够底层指令和细粒度类型的特性使得上层语言和 IR 的隔离变得简单,同时 IR 的行为更接近硬件,为进一步在 LLVM IR 上进行分析提供了可能性。

LLVM 整体架构

LLVM 是一个模块化和可重用的编译器和工具链技术库。它的整体架构包含从前端语言处理到最终生成目标机器码的完整优化流程。对于用户而言,通常会使用 Clang 作为前端,而 LLVM 的优化器和后端处理则是透明的。

在这里插入图片描述

  • 前端(Front-End):负责处理高级语言(如 C/C++/Obj-C)的编译,生成中间表示(IR)。
  • 优化器(Optimizer):对中间表示进行各种优化,提高代码执行效率。
  • 后端(Back-End):将优化后的中间表示转换为目标平台的机器码。

在这里插入图片描述

当用户编写的 C/C++/Obj-C 代码输入到 Clang 前端时,Clang 会执行以下步骤:

  • 词法分析(Lexical Analysis):将源代码转换为标记(tokens)。
  • 语法分析(Syntax Analysis):将标记转换为抽象语法树(AST)。
  • 语义分析(Semantic Analysis):检查语义正确性,生成中间表示(IR)。

生成的抽象语法树(AST)通过进一步处理,转换为 LLVM 的中间表示(IR)。这个中间表示是一种平台无关的低级编程语言,用于连接前端和后端。

在详细的架构图中,我们可以看到 LLVM 的前端、优化器、后端等各个组件的交互。在前端,Clang 会将高级语言代码转换为为 LLVM 的中间表示(IR)。

在这里插入图片描述

LLVM 的优化器通过多个优化 pass 来提升中间表示(IR)的性能。每个 pass 都对 IR 进行特定的优化操作,例如:

  • 常量折叠(Constant Folding):将编译时已知的常量表达式直接计算并替换。
  • 循环优化(Loop Optimizations):如循环展开、循环交换等,以提高循环执行效率。
  • 死代码消除(Dead Code Elimination):移除不必要的代码,提高执行效率。
    经过优化后的 IR 是一个更高效的中间表示,准备好进行后续的代码生成。

LLVM 的后端负责将优化后的中间表示转换为目标平台的机器码。这包含以下步骤:

  • 指令选择(Instruction Selection):将 IR 转换为目标架构的汇编指令。
  • 寄存器分配(Register Allocation):为指令分配合适的寄存器。
  • 指令调度(Instruction Scheduling):优化指令执行顺序,以提高指令流水线的效率。
  • 代码布局(Code Layout):调整代码的排列顺序,以适应目标硬件的执行特性。
  • 代码生成(Code Generation):生成目标平台的汇编代码和最终的机器码。
    最终,LLVM 后端输出目标平台的可执行文件。

LLVM 的整体架构清晰地分为前端、优化器和后端三个部分。用户与 Clang 前端直接交互,输入高级语言代码,而 Clang 将其转换为中间表示。之后,LLVM 的优化器和后端在后台处理,进行复杂的优化和代码生成步骤,最终输出高效的目标机器码。

在这里插入图片描述

在使用 LLVM 时,我们会从原始的 C 代码开始。这个 C 代码会经过一系列的预处理步骤,最终被转换为 LLVM 的中间表示文件(.ll 文件)或者 LLVM 字节码文件(.bc 文件)。

接下来使用 LLVM 的前端工具将中间表示文件编译成 IR。IR 的表示有两种方式,一种是 LLVM 汇编语言(.ll 文件),另一种是 LLVM 字节码(.bc 文件)。LLVM 汇编语言更为易读,方便人类阅读和理解。

IR 经过 LLVM 的后端编译器工具 llc 将 IR 转换为汇编代码(assembly code)。这个汇编代码是目标机器特定机器码指令的文本表示。

最后的两个步骤是将汇编代码汇编(assemble)成机器码文件,然后链接(link)生成可执行二进制文件,使其可以在特定平台上运行。

Clang + LLVM 案例实践

以下是对 Clang 编译过程中各个步骤的说明,其中 hello.c 是我们需要编译的 c 文件。

  1. 生成.i 文件
clang -E -c .\hello.c -o .\hello.i

这一步使用 Clang 的预处理器将 hello.c 文件中的所有预处理指令展开,生成预处理后的文件 hello.i。这包括展开宏定义、处理 #include 头文件等,生成一个纯 C 代码文件。

  1. 将预处理过后的.i 文件转化为.bc 文件
clang -emit-llvm .\hello.i -c -o .\hello.bc

这一步将预处理后的 hello.i 文件编译为 LLVM 位代码(bitcode)文件 hello.bc。LLVM 位代码是中间表示形式,可供进一步优化和转换。

clang -emit-llvm .\hello.c -S -o .\hello.ll

这一步将 hello.c 文件直接编译成 LLVM 中间表示的汇编代码文件 hello.ll,这是一种人类可读的中间表示形式,适用于进一步的分析和优化。

  1. llc

在前面两个步骤中,我们生成了 .i 文件和 LLVM 位代码文件 .bc 或中间表示文件 .ll。接下来,我们可以使用 llc 工具将这些中间表示文件转换为目标平台的汇编代码。

llc .\hello.ll -o .\hello.s
llc .\hello.bc -o .\hello2.s

通过以上命令,我们分别将 hello.ll 文件和 hello.bc 文件编译为汇编代码文件 hello.s 和 hello2.s。由于 hello.ll 和 hello.bc 表示相同的代码逻辑,所以生成的汇编代码文件 hello.s 和 hello2.s 是相同的。

  1. 转变为可执行的二进制文件
clang .\hello.s -o hello
  1. 查看编译过程
clang -ccc-print-phases .\hello.c
                +- 0: input, ".\hello.c", c
            +- 1: preprocessor, {0}, cpp-output
        +- 2: compiler, {1}, ir
    +- 3: backend, {2}, assembler
    +- 4: assembler, {3}, object
  +-5: linker, {4}, image
6: bind-arch,"x86_64", {5}, image

其中 0 是输入,1 是预处理,2 是编译,3 是后端优化,4 是产生汇编指令,5 是库链接,6 是生成可执行的 x86_64 二进制文件。

如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2249602.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

浅谈网络 | 应用层之HTTPS协议

目录 对称加密非对称加密数字证书HTTPS 的工作模式重放与篡改 使用 HTTP 协议浏览新闻虽然问题不大,但在更敏感的场景中,例如支付或其他涉及隐私的数据传输,就会面临巨大的安全风险。如果仍然使用普通的 HTTP 协议,数据在网络传输…

基于 JNI + Rust 实现一种高性能 Excel 导出方案(上篇)

每个不曾起舞的日子,都是对生命的辜负。 ——尼采 一、背景:Web 导出 Excel 的场景 Web 导出 Excel 功能在数据处理、分析和共享方面提供了极大的便利,是许多 Web 应用程序中的重要功能。以下是一些典型的场景: 数据报表导出&am…

最新Linux下使用conda配置Java23或17保姆教程(附赠安装包)

随着技术的不断进步,越来越多的开发者开始在Linux环境下进行Java应用的开发。Java 17作为长期支持版本(LTS),提供了许多新特性和性能改进。当然现在最新的是Java23,这个还作为实验版本未广泛使用。对于需要管理多个编程…

RHEL7+Oracle11.2 RAC集群-多路径(multipath+udev)安装步骤

RHEL7Oracle11.2RAC集群-多路径(multipathudev)安装 配置虚拟存储 使用StarWind Management Console软件,配置存储 dggrid1: 1g*3 Dggrid2: 1g*3 Dgsystem: 5g*1 系统表空间,临时表空间,UNDO,参数文件…

PyTorch 模型转换为 ONNX 格式

PyTorch 模型转换为 ONNX 格式 在深度学习领域,模型的可移植性和可解释性是非常重要的。本文将介绍如何使用 PyTorch 训练一个简单的卷积神经网络(CNN)来分类 MNIST 数据集,并将训练好的模型转换为 ONNX 格式。我们还将讨论 PTH …

VM Virutal Box的Ubuntu虚拟机与windows宿主机之间设置共享文件夹(自动挂载,永久有效)

本文参考如下链接 How to access a shared folder in VirtualBox? - Ask Ubuntu (1)安装增强功能(Guest Additions) 首先,在网上下载VBoxGuestAdditions光盘映像文件 下载地址:Index of http://…

CA系统(file.h---申请认证的处理)

#pragma once #ifndef FILEMANAGER_H #define FILEMANAGER_H #include <string> namespace F_ile {// 读取文件&#xff0c;返回文件内容bool readFilename(const std::string& filePath);bool readFilePubilcpath(const std::string& filePath);bool getNameFro…

【Git】Git 命令参考手册

目录 Git 命令参考手册1. 创建仓库1.1 创建一个新的本地仓库1.2 克隆一个仓库1.3 克隆仓库到指定目录 2. 提交更改2.1 显示工作目录中已修改的文件&#xff0c;准备提交2.2 将文件添加到暂存区&#xff0c;准备提交2.3 将所有已修改的文件添加到暂存区&#xff0c;准备提交2.4 …

【Linux系列】Chrony时间同步服务器搭建完整指南

1. 简介 Chrony是一个用于Linux系统的高效、精准的时间同步工具&#xff0c;通常用于替代传统的NTP&#xff08;Network Time Protocol&#xff09;服务。Chrony不仅在系统启动时提供快速的时间同步&#xff0c;还能在时钟漂移较大的情况下进行及时调整&#xff0c;因此广泛应…

数据库日志

MySQL中有哪些日志 1&#xff0c;redo log重做日志 redo log是物理机日志&#xff0c;因为它记录的是对数据页的物理修改&#xff0c;而不是SQL语句。 作用是确保事务的持久性&#xff0c;redo log日志记录事务执行后的状态&#xff0c;用来恢复未写入 data file的已提交事务…

【vue for beginner】Vue该怎么学?

&#x1f308;Don’t worry , just coding! 内耗与overthinking只会削弱你的精力&#xff0c;虚度你的光阴&#xff0c;每天迈出一小步&#xff0c;回头时发现已经走了很远。 vue2 和 vue3 Vue2现在正向vue3逐渐更新中&#xff0c;官方vue2已经不再更新。 这个历程和当时的pyt…

【Ubuntu 24.04】How to Install and Use NVM

参考 下载 curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash激活 Activate NVM: Once the installation script completes, you need to either close and reopen the terminal or run the following command to use nvm immediately. exp…

SeggisV1.0 遥感影像分割软件【源代码】讲解

在此基础上进行二次开发&#xff0c;开发自己的软件&#xff0c;例如&#xff1a;【1】无人机及个人私有影像识别【2】离线使用【3】变化监测模型集成【4】个人私有分割模型集成等等&#xff0c;不管是您用来个人学习 还是公司研发需求&#xff0c;都相当合适&#xff0c;包您满…

Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型

往期精彩内容&#xff1a; Python-凯斯西储大学&#xff08;CWRU&#xff09;轴承数据解读与分类处理 Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客 Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客 Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客 三十多个开源…

使用docker搭建hysteria2服务端

源链接&#xff1a;https://github.com/apernet/hysteria/discussions/1248 官网地址&#xff1a;https://v2.hysteria.network/zh/docs/getting-started/Installation/ 首选需要安装docker和docker compose 切换到合适的目录 cd /home创建文件夹 mkdir hysteria创建docke…

基于Java实现的潜艇大战游戏

基于Java实现的潜艇大战游戏 一.需求分析 1.1 设计任务 本次游戏课程设计小组成员团队合作的方式&#xff0c;通过游戏总体分析设计&#xff0c;场景画面的绘制&#xff0c;游戏事件的处理&#xff0c;游戏核心算法的分析实现&#xff0c;游戏的碰撞检测&#xff0c;游戏的反…

课题组自主发展了哪些CMAQ模式预报相关的改进技术?

空气污染问题日益受到各级政府以及社会公众的高度重视&#xff0c;从实时的数据监测公布到空气质量数值预报及预报产品的发布&#xff0c;我国在空气质量监测和预报方面取得了一定进展。随着计算机技术的高速发展、空气污染监测手段的提高和人们对大气物理化学过程认识的深入&a…

深入解析下oracle date底层存储方式

之前我们介绍了varchar2和char的数据库底层存储格式&#xff0c;今天我们介绍下date类型的数据存储格式&#xff0c;并通过测试程序快速获取一个日期。 一、环境搭建 1.1&#xff0c;创建表 我们还是创建一个测试表t_code&#xff0c;并插入数据&#xff1a; 1.2&#xff0c;…

【论文复现】SRGAN

1. 项目结构 如何生成文件夹的文件目录呢? 按住shift键,右击你要生成目录的文件夹,选择“在此处打开Powershell窗口” 在命令窗口里输入命令“tree”,按回车。就会显示出目录结构。 ├─.idea │ └─inspectionProfiles ├─benchmark_results ├─data │ ├─test …

Kubernetes 之 Ingress 和 Service 的异同点

1. 概念与作用 1.1 Ingress Ingress 是什么&#xff1f; Ingress主要负责七层负载&#xff0c;将外部 HTTP/HTTPS 请求路由到集群内部的服务。它可以基于域名和路径定义规则&#xff0c;从而将外部请求分配到不同的服务。 ingress作用 提供 基于 HTTP/HTTPS 的路由。 支持 …