【拥抱AI】RAG如何通过分析反馈、识别问题来提高命中率

news2024/11/28 10:38:08

分析用户反馈并识别问题是持续优化RAG系统的重要步骤。这不仅可以帮助你了解系统的当前表现,还可以指导未来的改进方向。直接进入正题,

1. 收集用户反馈

方法
  • 问卷调查:设计问卷,让用户填写他们对系统输出的满意度、易用性等方面的评价。
  • 用户访谈:通过一对一的访谈,深入了解用户的具体需求和不满之处。
  • 日志分析:记录系统使用过程中的日志数据,包括查询内容、响应时间、用户点击行为等。
  • 在线评论:监控社交媒体、论坛等平台上的用户评论和讨论。
2. 设计问卷
问卷设计原则
  • 简洁明了:问题应简短、清晰,避免冗长和复杂的表述。
  • 开放与封闭结合:结合选择题和开放式问题,既能快速获取定量数据,又能深入了解用户的详细意见。
  • 匿名选项:提供匿名提交选项,鼓励用户更坦诚地表达意见。
  • 多维度覆盖:涵盖系统的所有关键方面,如功能、性能、用户体验等。
示例问卷
1. 您对系统提供的答案满意吗?
   - 非常满意
   - 满意
   - 一般
   - 不满意
   - 非常不满意

2. 您认为系统的响应速度如何?
   - 非常快
   - 快
   - 一般
   - 慢
   - 非常慢

3. 您在使用过程中遇到的主要问题是什么?(可多选)
   - 无法理解某些术语
   - 答案不准确
   - 系统崩溃
   - 查询结果不相关
   - 用户界面不友好
   - 其他(请说明)

4. 您对系统有哪些具体的改进建议?

5. 您在哪些场景下使用系统最多?
   - 工作
   - 学习
   - 日常生活
   - 其他(请说明)

6. 您是否愿意参加后续的用户测试?
   - 是
   - 否

7. 您的联系方式(可选):
3. 用户访谈
访谈准备
  • 访谈提纲:准备一份详细的访谈提纲,确保覆盖所有关键点。
  • 访谈者培训:确保访谈者具备良好的沟通技巧,能够引导用户畅所欲言。
  • 录音设备:使用录音设备记录访谈内容,便于后续分析。
示例访谈提纲
1. 您通常在什么情况下使用我们的系统?
2. 您对系统提供的答案满意吗?如果有不满意的地方,请具体说明。
3. 您觉得系统的响应速度如何?是否有过等待时间过长的情况?
4. 您在使用过程中遇到过哪些问题?这些问题是如何影响您的使用的?
5. 您对系统的用户界面有何看法?有哪些地方可以改进?
6. 您对系统有哪些具体的改进建议?
7. 您是否愿意参加后续的用户测试?
4. 日志分析
日志类型
  • 查询日志:记录用户的查询内容、查询时间、查询结果等。
  • 错误日志:记录系统运行中的错误信息、异常堆栈等。
  • 用户行为日志:记录用户的点击行为、页面停留时间、交互路径等。
示例日志
查询日志:
- 时间:2024-11-25 13:22:00
- 用户ID:12345
- 查询内容:如何提高RAG命中
- 查询结果:[结果1, 结果2, 结果3]
- 响应时间:2.5秒

错误日志:
- 时间:2024-11-25 13:23:00
- 错误类型:IndexError
- 错误信息:list index out of range
- 堆栈跟踪:...

用户行为日志:
- 时间:2024-11-25 13:22:00
- 用户ID:12345
- 页面访问:首页 -> 查询页面 -> 结果页面
- 页面停留时间:30秒 -> 45秒 -> 60秒
- 点击行为:查询按钮 -> 第一个结果 -> 返回
5. 在线评论
监控工具
  • 社交媒体监听工具:使用Hootsuite、Brand24等工具监控社交媒体上的用户评论。
  • 论坛和社区:定期检查Reddit、Stack Overflow等社区的相关讨论。
  • 产品评价网站:关注Trustpilot、G2等平台上的用户评价。
示例监控
社交媒体评论:
- 用户名:@User1
- 平台:Twitter
- 评论内容:系统提供的答案很准确,但响应时间有点慢。

论坛讨论:
- 帖子标题:RAG系统使用体验分享
- 发布者:User2
- 内容:我在工作中经常使用这个系统,感觉非常方便,但有时候会出现查询结果不相关的情况。

产品评价:
- 用户名:User3
- 评价等级:4星
- 评价内容:系统功能强大,但用户界面有些复杂,新手不太容易上手。
6. 客服记录
记录内容
  • 用户问题:用户提出的具体问题或投诉。
  • 解决方案:客服团队提供的解决方案或解释。
  • 用户反馈:用户对解决方案的反馈,是否满意。
示例记录
- 用户ID:12345
- 问题:系统提供的答案不准确
- 解决方案:建议用户提供更多的上下文信息,以便系统更准确地理解问题
- 用户反馈:部分改善,但仍有改进空间

2. 整理和分类反馈

步骤
  • 数据清洗:去除无效或重复的反馈,确保数据的准确性和完整性。
  • 分类:将反馈分为不同的类别,例如“功能问题”、“性能问题”、“用户体验问题”等。
  • 量化:将定性反馈转化为定量数据,例如使用评分系统(1-5分)来量化用户满意度。
示例分类
类别           | 反馈数量 | 主要问题
--------------------------------------
功能问题       | 30       | 答案不准确
性能问题       | 15       | 响应时间长
用户体验问题   | 20       | 界面不友好
其他           | 5        | 特定场景下的问题

3. 分析反馈

方法
  • 频次分析:统计每个类别中的反馈数量,找出最常见的问题。
  • 情感分析:使用自然语言处理技术(如情感分析模型)来分析用户反馈的情感倾向。
  • 根因分析:深入分析每个问题的根本原因,例如技术问题、数据质量问题、用户误解等。
示例代码
import pandas as pd
from textblob import TextBlob

# 读取反馈数据
feedback_data = pd.read_csv('user_feedback.csv')

# 情感分析
def analyze_sentiment(text):
    blob = TextBlob(text)
    return blob.sentiment.polarity

feedback_data['sentiment'] = feedback_data['feedback'].apply(analyze_sentiment)

# 统计每个类别的反馈数量
category_counts = feedback_data['category'].value_counts()

# 打印结果
print(category_counts)
print(feedback_data[['feedback', 'sentiment']])

4. 识别问题

步骤
  • 高频问题:关注出现频率最高的问题,优先解决这些关键问题。
  • 严重问题:识别那些虽然出现频率不高但严重影响用户体验的问题。
  • 趋势分析:分析反馈随时间的变化趋势,找出潜在的问题模式。
示例表格
问题描述            | 出现次数 | 严重程度 | 根本原因
---------------------------------------------------
答案不准确         | 30       | 高       | 数据质量问题
响应时间长         | 15       | 中       | 性能瓶颈
界面不友好         | 20       | 低       | 设计问题
特定场景下的问题   | 5        | 高       | 功能缺失

5. 制定改进计划

步骤
  • 优先级排序:根据问题的频率和严重程度,确定改进的优先级。
  • 分配资源:为每个问题分配相应的资源,包括开发人员、数据科学家等。
  • 设定目标:为每个改进项设定明确的目标和时间表。
示例计划
问题描述            | 优先级 | 负责人 | 目标                | 时间表
-----------------------------------------------------------------
答案不准确         | 高     | 张三   | 提高答案准确率      | 1个月内
响应时间长         | 中     | 李四   | 优化系统性能        | 2个月内
界面不友好         | 低     | 王五   | 改进用户界面设计    | 3个月内
特定场景下的问题   | 高     | 赵六   | 添加特定功能        | 1个月内

6. 实施改进

步骤
  • 开发和测试:根据改进计划,开发新的功能或优化现有功能,并进行严格的测试。
  • 用户测试:邀请部分用户进行测试,收集他们的反馈,确保改进效果。
  • 部署上线:将改进后的系统部署到生产环境,监控其运行情况。

7. 持续监控和迭代

步骤
  • 定期评估:定期评估系统的性能和用户满意度,确保改进措施有效。
  • 反馈循环:建立一个持续的反馈循环,不断收集和分析用户反馈,进行迭代优化。

通过上述步骤,你可以系统地分析用户反馈,识别问题,并制定有效的改进计划,从而不断提升RAG系统的性能和用户体验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2248988.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何写出好证明(支持思想的深入数学写作)

不断的修改和精炼是写作过程中的重要环节,数学写作最终目的是提供对问题的深刻洞察而非仅仅陈述细节。 根据harvey mudd college Francis Su教授的《GUIDELINES FOR GOOD MATHEMATICAL WRITING》讲稿,总结出撰写好的数学证明需要注意以下几个要点&#x…

中英双语介绍DeepSpeed 的 ZeRO 优化

DeepSpeed 的 ZeRO 优化:通俗易懂的原理与实践指南 引言 在深度学习的大规模模型训练中,显存瓶颈是常见的挑战。DeepSpeed 提供了革命性的 ZeRO (Zero Redundancy Optimizer) 优化技术,为大模型训练节省显存、提高效率提供了强有力的工具。…

如何将 GitHub 私有仓库(private)转换为公共仓库(public)

文章目录 如何将 GitHub 私有仓库转换为公共仓库步骤 1: 登录 GitHub步骤 2: 导航到目标仓库步骤 3: 访问仓库设置步骤 4: 更改仓库可见性步骤 5: 确认更改步骤 6: 验证更改注意事项 如何将 GitHub 私有仓库转换为公共仓库 在软件开发领域,GitHub 是一个广受欢迎的…

【webrtc】 mediasoup中m77的IntervalBudget及其在AlrDetector的应用

IntervalBudget 用于带宽控制和流量整形 mediasoup中m77 代码的IntervalBudget ,版本比较老IntervalBudget 在特定时间间隔内的比特预算管理,从而实现带宽控制和流量整形。 一。 pacedsender 执行周期: 下一次执行的时间的动态可变的 int64_t PacedSender::TimeUntilNextPr…

Z2400023基于Java+Servlet+jsp+mysql的酒店管理系统的设计与实现 源码 调试 文档

酒店管理系统的设计与实现 1.摘要2.主要功能3. 项目技术栈运行环境 4.系统界面截图5.源码获取 1.摘要 本文介绍了一个基于Java的酒店管理系统,该系统采用Servlet、JSP、JDBC以及c3p0等技术构建,为酒店提供了一个全面的管理平台。该系统不仅适合酒店进行…

《操作系统 - 清华大学》5 -5:缺页异常

文章目录 1. 缺页异常的处理流程2.在何处保存未被映射的页?3. 虚拟内存性能 1. 缺页异常的处理流程 缺页中断的处理过程: CPU读内存单元,在TLB中根据其虚拟地址匹配物理地址,未命中,读页表; 由于页表项的存在位为0,CP…

C++:多态的原理

目录 一、多态的原理 1.虚函数表 2.多态的原理 二、单继承和多继承的虚函数表 1、单继承中的虚函数表 2、多继承中的虚函数表 一、多态的原理 1.虚函数表 首先我们创建一个使用了多态的类&#xff0c;创建一个对象来看其内部的内容&#xff1a; #include<iostre…

Ubuntu 硬盘分区并挂载

一、什么是挂载 1.挂载的定义 在 Ubuntu&#xff08;或其他 Linux 系统&#xff09;中&#xff0c;挂载&#xff08;Mount&#xff09; 是将一个存储设备或分区连接到系统的文件系统层次结构中的过程。挂载后&#xff0c;你可以通过某个目录&#xff08;挂载点&#xff09;访问…

python-docx -- 读取word页眉、页脚

文章目录 sections介绍访问section添加section页眉、页脚综合案例:sections介绍 word支持section的概念,即一个文档的划分部分,不同的部分均包含相同的页面布局设置,如相同的边距、页面方向等;在每个section中可以定义页眉、页脚来应用于该section下的所有页面;大部分wor…

开源加密库mbedtls及其Windows编译库

目录 1 项目简介 2 功能特性 3 性能优势 4 平台兼容性 5 应用场景 6 特点 7 Windows编译 8 编译静态库及其测试示例下载 1 项目简介 Mbed TLS是一个由ARM Maintained的开源项目&#xff0c;它提供了一个轻量级的加密库&#xff0c;适用于嵌入式系统和物联网设备。这个项…

《生成式 AI》课程 第7講:大型語言模型修練史 — 第二階段: 名師指點,發揮潛力 (兼談對 ChatGPT 做逆向工程與 LLaMA 時代的開始)

资料来自李宏毅老师《生成式 AI》课程&#xff0c;如有侵权请通知下线 Introduction to Generative AI 2024 Springhttps://speech.ee.ntu.edu.tw/~hylee/genai/2024-spring.php 摘要 这一系列的作业是为 2024 年春季的《生成式 AI》课程设计的&#xff0c;共包含十个作业。…

公司金融期末考试题目

公司金融期末考试题 选择题 1.现金折扣和信用条件&#xff08;教材P253&#xff09; 题目类似&#xff1a; 下列不属于信用条件的是&#xff08;&#xff09;。 现金折扣 数量折扣信用期限 折扣期限 给定的信用条件为"1/10&#xff0c;n/40"&#xff0c;则其含义…

【前端】JavaScript中的字面量概念与应用详解

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 &#x1f4af;前言&#x1f4af;字面量1. 数字字面量2. 字符串字面量3. 布尔字面量4. 空值字面量&#xff08;null&#xff09;5. 对象字面量6. 数组字面量7. 正则表达式字面量8. 特殊值字面量9. 函数字…

Kotlin DSL Gradle 指南

本文是关于 Kotlin DSL Gradle 的指南&#xff08;上篇&#xff09;&#xff0c;介绍了 Gradle 作为 Android 开发构建工具的作用及优势&#xff0c;包括初始配置、生命周期、依赖管理、Task 相关内容。如 Task 的创建、自定义、各种方法和属性&#xff0c;以及文件操作等&…

Web开发:使用stackexchange.redis库对redis进行增删改查

一、安装第三方库 二、官网 StackExchange.Redis |通用型 redis 客户端 三、连接示例 private static string redisConnectionString "localhost:6379,passwordyourpassword,defaultDatabase0,allowAdmintrue,asyncTimeout10000";private static string redisConn…

2024年第15届蓝桥杯C/C++组蓝桥杯JAVA实现

目录 第一题握手&#xff0c;这个直接从49累加到7即可&#xff0c;没啥难度&#xff0c;后面7个不握手就好了&#xff0c;没啥讲的&#xff0c;(然后第二个题填空好难&#xff0c;嘻嘻不会&#xff09; 第三题.好数​编辑 第四题0R格式 宝石组合 数字接龙 最后一题:拔河 第…

Django基础之路由

一.前言 前面我们说了django的安装于基础配置&#xff0c;基础知识点我就细分下来&#xff0c;每天和大家讲一点&#xff0c;今天就要和大家说django的基础知识点了&#xff0c;我们今天先来讲路由&#xff0c;内容不多&#xff0c;希望大家记住 二.传统路由 路由就是前面一个…

gitlab ssh-key 绑定

windows环境下配置 gitlab的ssh key&#xff1a; 1.打开本地git bash,使用如下命令生成ssh公钥和私钥对: ssh-keygen -t rsa -C xxxxxx.com 2.一直回车&#xff1b; 3.然后打开公钥文件&#xff1a;C:/Users/Administrator/.ssh/id_rsa.pub文件&#xff0c;复制其中的内容; 4…

26.100ASK_T113-PRO 测试摄像头 输出信息

1.测试代码 读到摄象头参数 输出 video_test.c #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <sys/ioctl.h> #include <unistd.h> #include <stdio.h> #include <string.h> #include <linux/type…

【人工智能】深入解析GPT、BERT与Transformer模型|从原理到应用的完整教程

在当今人工智能迅猛发展的时代&#xff0c;自然语言处理&#xff08;NLP&#xff09;领域涌现出许多强大的模型&#xff0c;其中GPT、BERT与Transformer无疑是最受关注的三大巨头。这些模型不仅在学术界引起了广泛讨论&#xff0c;也在工业界得到了广泛应用。那么&#xff0c;G…