鱼眼相机模型-MEI

news2025/1/12 12:10:25

参考文献: Single View Point Omnidirectional Camera Calibration from Planar Grids

1. 相机模型如下:

   // 相机坐标系下的点投影到畸变图像
   // 输入:相机坐标系点坐标cam  输出: 畸变图像素点坐标disPt
   void FisheyeCamAdapter::cam2DistImg(cv::Point3f &cam, cv::Point2f &disPt)
    {
        double r = cv::norm(cam);
        double dx_u = 0, dy_u = 0;
        if (r != 0)
        {
            cv::Point3f ps = cam / r;
            double x = ps.x / (ps.z + camInt.fXi);
            double y = ps.y / (ps.z + camInt.fXi);
            distortion(x, y, &dx_u, &dy_u);
            x += dx_u;
            y += dy_u;
            disPt.x = x * camInt.fGammaX + camInt.fCx;
            disPt.y = y * camInt.fGammaY + camInt.fCy;
        }
        else
        {
            disPt.x = camInt.fCx;
            disPt.y = camInt.fCy;
        }
    }
    // 无畸变图像到畸变图像
    void FisheyeCamAdapter::distortion(double mx_u, double my_u, double *dx_u, 
         double *dy_u)
    {
        double mx2_u = 0., my2_u = 0., mxy_u = 0., rho2_u = 0., rad_dist_u = 0.;

        double k1 = camInt.distortCoeff[0];
        double k2 = camInt.distortCoeff[1];
        double p1 = camInt.distortCoeff[2];
        double p2 = camInt.distortCoeff[3];
        double k5 = camInt.distortCoeff[4];

        mx2_u = mx_u * mx_u;
        my2_u = my_u * my_u;
        mxy_u = mx_u * my_u;
        rho2_u = mx2_u + my2_u;
        rad_dist_u = k1 * rho2_u + k2 * rho2_u * rho2_u + k5 * rho2_u * rho2_u * 
        rho2_u;
        *dx_u = mx_u * rad_dist_u + 2 * p1 * mxy_u + p2 * (rho2_u + 2 * mx2_u);
        *dy_u = my_u * rad_dist_u + 2 * p2 * mxy_u + p1 * (rho2_u + 2 * my2_u);
    }

   反投影过程:畸变图中的像素坐标计算相机坐标系下坐标

    cv::Point3f FisheyeCamAdapter::pointDis2Camera(const cv::Point2f &disPoint)
    {
        double mx_d, my_d, mx_u, my_u;
        double lambda;

        double xi = camInt.fXi;
        // Lift points to normalised plane
        float inv_K11 = 1 / camInt.fGammaX;
        float inv_K13 = -camInt.fCx / camInt.fGammaX;
        float inv_K22 = 1 / camInt.fGammaY;
        float inv_K23 = -camInt.fCy / camInt.fGammaY;
        mx_d = inv_K11 * (disPoint.x) + inv_K13;
        my_d = inv_K22 * (disPoint.y) + inv_K23;
        undistortGN(mx_d, my_d, &mx_u, &my_u, 100); // 去畸变坐标
        // Lift normalised points to the sphere (inv_hslash)
        cv::Point3f camera;
        if (xi == 1)
        {
            lambda = 2 / (mx_u * mx_u + my_u * my_u + 1);
            camera.x = lambda * mx_u;
            camera.y = lambda * my_u;
            camera.z = lambda - 1;
        }
        else
        {
            double sqrt_i = 1.0 + (1.0 - xi * xi) * (mx_u * mx_u + my_u * my_u);
            if (sqrt_i < 0)
            {
                camera.x = -1000000;
                camera.y = -1000000;
                camera.z = 1;
            }
            else
            {
                lambda = (xi + sqrt(sqrt_i)) / (1.0 + mx_u * mx_u + my_u * my_u);
                camera.x = lambda * mx_u;
                camera.y = lambda * my_u;
                camera.z = lambda - xi;
            }
        }
        return camera;
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2248164.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Reactor 模式的理论与实践

1. 引言 1.1 什么是 Reactor 模式&#xff1f; Reactor 模式是一种用于处理高性能 I/O 的设计模式&#xff0c;专注于通过非阻塞 I/O 和事件驱动机制实现高并发性能。它的核心思想是将 I/O 操作的事件分离出来&#xff0c;通过事件分发器&#xff08;Reactor&#xff09;将事…

windows下安装wsl的ubuntu,同时配置深度学习环境

写在前面&#xff0c;本次文章只是个人学习记录&#xff0c;不具备教程的作用。个别信息是网上的&#xff0c;我会标注&#xff0c;个人是gpt生成的 安装wsl 直接看这个就行&#xff1b;可以不用备份软件源。 https://blog.csdn.net/weixin_44301630/article/details/1223900…

深入探索 CnosDB 可观测性最佳实践:开篇

随着云计算、微服务、容器化和 DevOps 等技术的迅猛发展&#xff0c;现代软件系统变得愈加复杂和动态。传统的监控手段已经无法满足对系统状态的全面、实时、准确地了解。在这样的背景下&#xff0c;可观测性&#xff08;Observability&#xff09;作为一种新兴的技术理念应运而…

World of Warcraft /script SetRaidTarget(“target“, n, ““) n=8,7,6,5,4,3,2,1,0

魔兽世界执行当前目标标记方法 /script SetRaidTarget("target", n, "") n8,7,6,5,4,3,2,1,0 解析这个lua脚本 D:\Battle.net\World of Warcraft\_classic_\Interface\AddOns\wMarker wMarker.lua /script SetRaidTarget("target", 8, &quo…

[极客大挑战 2019]BabySQL--详细解析

信息搜集 进入界面&#xff1a; 输入用户名为admin&#xff0c;密码随便输一个&#xff1a; 发现是GET传参&#xff0c;有username和password两个传参点。 我们测试一下password点位能不能注入&#xff1a; 单引号闭合报错&#xff0c;根据报错信息&#xff0c;我们可以判断…

信创改造 - TongRDS 替换 Redis

记得开放 6379 端口哦 1&#xff09;首先在服务器上安装好 TongRDS 2&#xff09;替换 redis 的 host&#xff0c;post&#xff0c;passwd 3&#xff09;TongRDS 兼容 jedis # 例如&#xff1a;更改原先 redis 中对应的 host&#xff0c;post&#xff0c;passwd 改成 TongRDS…

Node.js的http模块:创建HTTP服务器、客户端示例

新书速览|Vue.jsNode.js全栈开发实战-CSDN博客 《Vue.jsNode.js全栈开发实战&#xff08;第2版&#xff09;&#xff08;Web前端技术丛书&#xff09;》(王金柱)【摘要 书评 试读】- 京东图书 (jd.com) 要使用http模块&#xff0c;只需要在文件中通过require(http)引入即可。…

springboot项目使用maven打包,第三方jar问题

springboot项目使用maven package打包为可执行jar后&#xff0c;第三方jar会被打包进去吗&#xff1f; 答案是肯定的。做了实验如下&#xff1a; 第三方jar的项目结构及jar包结构如下&#xff1a;&#xff08;该第三方jar采用的是maven工程&#xff0c;打包为普通jar&#xf…

【linux】服务器加装硬盘后如何将其设置为独立硬盘使用

【linux】服务器加装硬盘后如何将其设置为独立硬盘使用 问题描述&#xff1a;本服务器原本使用了两个硬盘作为存储硬盘&#xff0c;同时对这两个硬盘设置了raid1阵列。现在内存不足要进行加载硬盘&#xff0c;新加载的硬盘不设置为raid1&#xff0c;而是将新加装的两个硬盘作为…

win10中使用ffmpeg和MediaMTX 推流rtsp视频

在win10上测试下ffmpeg推流rtsp视频&#xff0c;需要同时用到流媒体服务器MediaMTX 。ffmpeg推流到流媒体服务器MediaMTX &#xff0c;其他客户端从流媒体服务器拉流。 步骤如下&#xff1a; 1 下载MediaMTX github: Release v1.9.3 bluenviron/mediamtx GitHub​​​​​…

【jupyter】linux服务器怎么使用jupyter

从github上拉取的项目包含 jupyter脚本&#xff1a; 直接点击运行按钮弹出窗口&#xff1a; 选择python环境&#xff1a; 这是我下载的插件&#xff1a; 选好环境后点击运行&#xff0c;却弹出提醒窗口&#xff1a; 点击install自动下载&#xff0c;就是速度很慢&…

ubuntu 安装 docker 记录

本文假设系统为 Ubuntu&#xff0c;从 16.04 到 24.04&#xff0c;且通过 APT 命令安装。理论上也其他 Debian 系的操作系统。 WSL 也一样。 感觉 Docker 官方在强推 Docker Desktop&#xff0c;搜索 Docker 安装文档&#xff0c;一不小心就被导航到了 Docker Desktop 的安装页…

稀疏最大谐波噪声比解卷积算法MATLAB实战

稀疏最大谐波噪声比解卷积&#xff08;SMHD&#xff09;算法是一种信号处理方法&#xff0c;特别是在处理含有噪声和谐波分量的复杂信号时表现出色。在信号处理领域&#xff0c;经常需要从被噪声和谐波干扰的信号中提取出有用的信息。传统的解卷积方法可能需要预先设定故障周期…

UE5肉鸽游戏教程学习

学习地址推荐&#xff1a;UE5肉鸽项目实战教程_哔哩哔哩_bilibili

从Full-Text Search全文检索到RAG检索增强

从Full-Text Search全文检索到RAG检索增强 时光飞逝&#xff0c;转眼间六年过去了&#xff0c;六年前铁蛋优化单表千万级数据查询性能的场景依然历历在目&#xff0c;铁蛋也从最开始做CRUD转行去了大数据平台开发&#xff0c;混迹包装开源的业务&#xff0c;机缘巧合下做了实时…

Jmeter的组件执行顺序

在 Apache JMeter 中&#xff0c;组件的加载和执行顺序遵循一定的规则&#xff0c;但有些组件在同一层级中可能会根据它们在测试计划中的位置来决定具体的执行顺序。以下是这些组件的大致加载和执行顺序&#xff0c;以及哪些组件属于同一层级&#xff1a; 线程组&#xff08;Th…

Flutter:启动屏逻辑处理02:启动页

启动屏启动之后&#xff0c;制作一个启动页面 新建splash&#xff1a;view 视图中只有一张图片sliding.png就是我们的启动图 import package:flutter/material.dart; import package:get/get.dart; import index.dart; class SplashPage extends GetView<SplashController…

分布式kettle调度平台v6.4.0新功能介绍

介绍 Kettle&#xff08;也称为Pentaho Data Integration&#xff09;是一款开源的ETL&#xff08;Extract, Transform, Load&#xff09;工具&#xff0c;由Pentaho&#xff08;现为Hitachi Vantara&#xff09;开发和维护。它提供了一套强大的数据集成和转换功能&#xff0c…

一个高度可扩展的 Golang ORM 库【GORM】

GORM 是一个功能强大的 Golang 对象关系映射&#xff08;ORM&#xff09;库&#xff0c;它提供了简洁的接口和全面的功能&#xff0c;帮助开发者更方便地操作数据库。 1. 完整的 ORM 功能 • 支持常见的关系模型&#xff1a; • Has One&#xff08;一对一&#xff09; • …

反向代理服务器的用途

代理服务器在网络中扮演着重要的角色&#xff0c;它们可以优化流量、保护服务器以及提高安全性。在代理服务器中&#xff0c;反向代理服务器是一种特殊类型&#xff0c;常用于Web服务器前&#xff0c;它具备多种功能&#xff0c;能够确保网络流量的顺畅传输。那么&#xff0c;让…