Prompting LLMs to Solve Complex Tasks: A Review

news2025/1/26 15:41:41

文章目录

    • 题目
    • 简介
    • 任务分解
    • 未来方向
    • 结论

题目

促使 LLM 解决复杂任务: 综述
在这里插入图片描述

论文地址:https://www.intjit.org/cms/journal/volume/29/1/291_3.pdf

简介

    大型语言模型 (LLM) 的最新趋势显而易见,这体现在大型科技公司的投资以及媒体和在线社区对 LLM 的广泛讨论和迷恋中。OpenAI 的 GPT 系列,尤其是 GPT-3 和 GPT-4 [OpenAI, 2023],因其先进的文本生成功能而成为头条新闻。微软等大公司已将 LLM 集成到其产品中,增强了 Bing 和 Office Suite 等应用程序的用户体验。我们还可以看到专注于 LLM 的学者人数激增,凸显了人们对该领域日益增长的兴趣 [Touvron et al, 2023a, Touvron et al, 2023b]。此外,媒体和在线社区对 LLM 的广泛讨论和迷恋凸显了它们的影响力以及公众对人工智能进步的兴趣。

    随着 LLM 如此受欢迎,并且 LLM 在各种下游任务中展示了其能力,如何利用 LLM 来解决复杂任务成为一个重要问题。其中,提示工程是与 LLM 互动的最直接、最有效的方式 [Liu et al, 2023b, Qiao et al, 2022]。通过制作精确清晰的提示,用户可以向 LLM 提供更好的指示,确保更准确、更符合语境的答案。这种做法不仅有助于控制 LLM 输出的语气和风格,使其适合不同的目的和受众,而且还减少了歧义,从而实现更直接、更高效的交互。因此,提示工程是充分利用 LLM 潜力的关键工具,确保他们的回答尽可能有益和相关。

    与 LLM 合作时,思路链提示 (CoT) [Wei et al, 2022] 涉及将复杂问题分解为一系列逻辑步骤,类似于人类思考问题的方式。这种方法很重要,因为它增强了 LLM 处理复杂多步骤推理任务的能力。例如,在解决数学问题时,模型首先识别相关信息,然后依次应用数学运算,清晰地阐明每个步骤,然后得出最终答案。同样,在关于因果关系的推理任务中为了达到这一目的,该模型在得出结论之前会系统地评估场景的各个方面。通过这样做,CoT 不仅使模型的推理过程更加透明,而且显著提高了其解决问题的准确性。

    受到 CoT 简单而强大的启发,我们希望进一步深入研究将任务分解为提示中的子任务的方法,以使 LLM 能够解决复杂任务。在本文中,我们首先回顾了现有的方法,这些方法也侧重于提示 LLM 解决问题。然后,我们提出了进一步改进的可能方向。我们希望这项调查可以引导感兴趣的研究人员对复杂任务进行快速工程设计,并提高对该领域进一步建设的兴趣。第 2 节将总结当前的论文,这些论文将复杂任务分解为提示中的子任务,以指导 LLM 解决问题。讨论了两种类型的方法及其区别,即迭代分解和计划然后执行分解。第 3 节讨论了当前方法的缺点,以及分层分解如何潜在地促使 LLM 更好地解决复杂任务。

任务分解

    将复杂任务分解为简单任务特别有用,因为如果不考虑推理步骤就无法立即解决该任务。在本节中,我们介绍了分解复杂任务的方法和有助于提高分解性能的辅助技术。迭代分解生成一个简单的子任务,执行操作以完成子任务,然后利用先前结果的知识重复此过程。在 [Press et al, 2022] 中,作者通过实证表明,即使 LLM 知道复杂问题所有所需子问题的真实答案,当要求它们直接回答复杂问题时,LLM 也常常是错误的。这一发现表明了将复杂任务分解为简单子任务对 LLM 的重要性。

    思路链提示 [Wei et al, 2022] 可以被认为是第一个尝试将任务分解为子任务序列的工作。通过向 LLM 展示一系列中间自然语言推理步骤,这些步骤最终导致提示中的输出,LLM 可以自然地模仿类似人类的问题解决过程。在这里,中间推理步骤可以被视为子任务,因为它们都是回答问题所必需的,并且它们按顺序连接以形成导致问题最终解决方案的子任务序列。研究人员甚至发现,只需在提示中添加“让我们一步一步思考。”就可以引导 LLM 执行思路链分解 [Kojima et al, 2022]。上述两项工作隐含地遵循迭代分解,因为 LLM 以自回归的方式生成 token,可以表述为:在这里插入图片描述

    我们可以看到,在生成 xt 时它是一个条件概率,这意味着它们可以根据之前的内容决定下一个子任务。 还有一些方法明确指示 LLM 采用迭代分解策略。 DecomP [Khot et al, 2022] 和 Successive Prompting [Dua et al, 2022] 代表了两种当代技术,它们采用重复提问的方法来收集涉及问答任务的背景信息。 模型回答的每个子问题都是一个要完成的子任务。 与可能在单个输出中顺序生成子问题的 CoT 相比,这两种方法明确指导 LLM 在此过程中生成后续问题。 实证结果表明,明确指示 LLM 分解复杂任务优于依赖 LLM 自己进行的隐式分解。

    单步分解,与迭代分解不同,单步分解方法仅使用一个提示将任务分解为较小的任务。例如,[Zhou et al, 2022] 中提到的从最少到最多提示法,对于 LLM 只需要两个提示:一个用于制定将主要任务分解为较小步骤的计划,另一个用于执行这些步骤。[Wang et al, 2023a] 中描述的计划和解决提示技术通过将计划和执行阶段合并为一个响应来提高从最少到最多提示的效率。DEPS [Wang et al, 2023b] 和 GITM [Zhu et al, 2023] 是针对游戏 Minecraft 的专门分解策略,Minecraft 是一款沙盒游戏,玩家可以在其中创建各种物品和工具。在这个游戏中,收集基本材料被视为构建所需物品所需的一系列子任务。 DEPS 制定了获取所需物品的顺序计划,而 GITM 则提示 LLM 将任务分解为子任务树结构。

    与 DecomP 和连续提示等方法相比,单步分解方法更省时,因为它减少了 LLM 所需的提示数量。尽管如此,DecomP 和连续提示提供了更大的适应性,允许根据前一个子任务的结果定制下一个子任务,而一次性分解方法中的计划保持不变。单步分解更适合子任务限制在相对较窄范围内的任务。例如,在 Minecraft 中,任务和先决条件之间的复杂性和相互联系比知识密集型问答更直接。这种简单性使通过一次性分解生成的计划具有更高的准确性。最终,在效率和精度之间进行选择取决于手头任务的具体性质。

    外部分解,上述类别都依赖于 LLM 的知识将任务分解为更小的子任务。然而,正如文献所指出的那样,它们面临着幻觉问题的挑战 [Ji et al, 2023]。有时,这些方法会生成看似合理但缺乏坚实现实基础的子任务。为了确保分解过程的精确性,LLM+P [Liu et al, 2023a] 和 SayPlan [Rana et al, 2023] 采用了不同的方法,整合了经典规划技术。他们使用 LLM 将用自然语言表达的任务转换为经典规划器使用的领域特定语言。这使经典规划器能够更有效地处理任务。规划器产生的结果随后由 LLM 翻译回自然语言。

    子任务预定义,从受限池中选择潜在子任务具有制定更精确、更高效的子任务序列的优势。这种方法有助于防止 LLM 因不相关或错误的子任务而偏离正轨。PEARL [Sun et al, 2023] 是专门为回答冗长文档中的问题而定制的。它采用了一组预定义的子任务,例如“定位 A 的定义”、“比较 A 和 B”和“总结 A”,LLM 可以从中选择有价值的子任务并将其组织成一个连贯的计划。同样,ProCoT [Deng et al, 2023] 建立了预定义的子任务,包括查询澄清、主题转换和谈判策略,专为对话系统设计。DecomP [Khot et al, 2022] 采用了不同的方法,从一系列子任务函数(如用于第 k 个字母连接的“split”和“merge”)中选择子任务。该方法在多种任务中进行了评估,包括涉及广泛上下文的任务、开放域问答和符号推理。同时,SayPlan [Rana et al, 2023] 是针对机器人规划任务量身定制的。给定任务指令,它使用语义搜索来识别整个 3D 场景图中的相关子图,作为规划环境。随后,LLM 仅根据此识别的子图制定计划。

未来方向

    当前提示大型语言模型 (LLM) 的方法通常涉及将最终任务拆分为顺序子任务或制定计划以同时执行所有步骤。但是,在处理复杂任务时,这种顺序方法可能会受到限制。该方法可能无法充分解决每个子任务的复杂性,尤其是在每个子任务本身都很复杂且多方面的情况下。因此,由于对这些复杂组件的分解不足,模型可能难以准确完成最终任务。相比之下,任务的层次分解(将每个子任务进一步分解为更小、更易于管理的部分)提供了更强大的解决方案。这种方法可以更深入、更详细地探索任务的每个方面,确保彻底理解和解决每个元素。例如,在复杂的问题解决场景中,子任务可能涉及多层推理或计算,每层都需要自己的特定方法。层次分解将使模型能够单独处理这些层,确保更全面、更准确地完成最终任务。这种方法不仅增强了 LLM 的解决问题能力,而且更紧密地反映了人类的认知过程,从而产生了合乎逻辑、结构良好且更可靠的解决方案。

结论

    本综述批判性地分析了各种分解方法在促使 LLM 解决复杂任务中的应用。我们已经看到,迭代、单步、外部和预定义子任务分解各自提供了独特的优点和局限性。我们的分析表明,虽然当前的方法可以提高 LLM 的解决问题能力,但仍有很大的改进空间。未来的研究应侧重于开发更先进的分层分解策略,以更好地模仿人类的认知过程并提供更细致入微、更可靠的解决方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2246886.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

反射、依赖注入

特性和依赖注入都是基于反射的,同时反射一般和接口配合着使用。 接口隔离原则 接口隔离原则:主张应该把客户端对一个类的需求分解成更小、更具体的接口,而不是提供一个包含所有功能的大接口。 接口中的需求是:乙方不能少给&am…

MT8768/MTK8768安卓核心板性能参数_联发科安卓智能模块开发方案

MT8768安卓核心板 是一款采用台积电12nm FinFET制程工艺的智能手机芯片。MT8768核心板不仅提供所有高级功能和出色体验,同时确保智能终端具备长电池寿命。该芯片提供了一个1600x720高清(20:9比例)分辨率显示屏,排除了清晰度和功耗之间的平衡问题。该芯片…

VBA技术资料MF229:以毫米为单位设置行高和列宽

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。“VBA语言専攻”提供的教程一共九套,分为初级、中级、高级三大部分,教程是对VBA的系统讲解&#…

深入JMeter核心引擎:揭秘JmeterEngine、StandardJmeterEngine、ClientJmeterEngine与Remote的奥秘

引言 Apache JMeter是一款广泛使用的开源性能测试工具,它能够帮助开发者和测试人员模拟大量并发用户对应用程序进行负载测试。JMeter的强大功能和灵活性源于其精心设计的核心引擎。本文将深入探讨JMeter的核心引擎,包括JmeterEngine、StandardJmeterEng…

软件工程导论 选填题知识点总结

一 原型化方法是一种动态定义需求的方法,提供完整定义的需求不是原型化方法的特征,其特征包括尽快建立初步需求、简化项目管理以及加强用户参与和决策。 软件危机的表现包括用户对已完成的软件系统不满意的现象经常发生、软件产品的质量往往靠不住、软件…

Rust中Tracing 应用指南

欢迎来到这篇全面的Rust跟踪入门指南。Rust 的tracing是一个用于应用程序级别的诊断和调试的库。它提供了一种结构化的、异步感知的方式来记录日志和跟踪事件。与传统的日志记录相比,tracing能够更好地处理复杂的异步系统和分布式系统中的事件跟踪,帮助开…

机器学习实战:银行客户是否认购定期存款

项目结构与步骤 1. 项目概述 项目名称:葡萄牙银行电话营销活动分析与定期存款认购预测目标:通过分析银行的电话营销数据,构建模型预测客户是否会认购定期存款。数据来源:葡萄牙银行营销活动数据集关键挑战:数据不平衡…

服务器数据恢复—raid5阵列热备盘上线失败导致EXT3文件系统不可用的数据恢复案例

服务器数据恢复环境: 两组分别由4块SAS硬盘组建的raid5阵列,两组阵列划分的LUN组成LVM架构,格式化为EXT3文件系统。 服务器故障: 一组raid5阵列中的一块硬盘离线。热备盘自动上线替换离线硬盘,但在热备盘上线同步数据…

C++vector

Cvector是标准库中的一员,vector直译过来是“向量”、“矢量”的意思,在C中,是一个动态的数组容器,可以动态的开辟空间,自动实现内存的管理,不需要我们手动操作,在标准库中,写作一个…

“漫步北京”小程序及“气象景观数字化服务平台”上线啦

随着科技的飞速发展,智慧旅游已成为现代旅游业的重要趋势。近日,北京万云科技有限公司联合北京市气象服务中心,打造的“气象景观数字化服务平台“和“漫步北京“小程序已经上线,作为智慧旅游的典型代表,以其丰富的功能…

LlamaIndex+本地部署InternLM实践

LlamaIndex本地部署InternLM实践 XTuner是一个调整模型参数的小工具,通过对于给定的大模型输入有限的参数来调整同类型问题的结果输出 ‌LlamaIndex‌是一个将大语言模型(LLMs)和外部数据连接在一起的工具,主要用于增强大模型的知识获取能力…

【阵列信号处理】相干信号和非相干信号生成

文章目录 一、总结二、知识点相干(coherent)和非相干(incoherent)信号相干信号生成代码 相关信号(correlated signal)相关信号生成代码 正交信号定义 本文记录博主的科研日记。如果对博主的其他文章感兴趣&…

vue3项目部署在阿里云轻量应用服务器上

文章目录 概要整体部署流程技术细节小结 概要 vue3前端项目部署在阿里云轻量服务器 整体部署流程 首先有一个Vue3前端项目和阿里云应用服务器 确保环境准备 如果是新的服务器,在服务器内运行以下命令更新软件包 sudo apt update && sudo apt upgrade -y …

东土科技孵化的“网联汽车高速通信技术”前沿产品亮相2024WICV大会

2024世界智能网联汽车大会(WICV)于近日在北京召开。本次大会发布了由中国汽车工程学会组织全球200余位专家,联合评审遴选出未来十年对于智能网联汽车发展具有重要影响的十大技术趋势,包括“面向高级别自动驾驶的超级人工智能”“网…

【云计算网络安全】解析 Amazon 安全服务:构建纵深防御设计最佳实践

文章目录 一、前言二、什么是“纵深安全防御”?三、为什么有必要采用纵深安全防御策略?四、以亚马逊云科技为案例了解纵深安全防御策略设计4.1 原始设计缺少安全策略4.2 外界围栏构建安全边界4.3 访问层安全设计4.4 实例层安全设计4.5 数据层安全设计4.6…

关于相机选型的一些参数说明

上一篇:关于相机的一些参数计算(靶面、视野等) 目录 1.卷帘快门和全局快门1.1 卷帘快门1.2 全局快门PS:视觉伺服与快门选择 2.黑白和彩色3.CCD和CMOS3.1 CCD3.2 CMOSCCD VS CMOS 4.面阵和线扫4.1 面阵4.2 线扫4.3 面阵 VS 线扫 5.…

C 语言复习总结记录二

C 语言复习总结记录二 一 控制语句 1、语句的分类 表达式语句函数调用语句复合语句控制语句空语句 控制语句 控制程序的执行流程,实现程序的各种结构方式 C 语言支持三种结构 :顺序结构、选择结构、循环结构,由特定的语句定义符组成C语言…

【mongodb】社区版8:改变配置bindip和授权

更改配置 sudo systemctl restart mongod (base) root@k8s-master-pfsrv:/home/zhangbin# sudo tail -n 20 /var/log/mongodb/mongod.log 日志感觉是成功了:{"t":{"$date":"2024-11-19T19:57:47.076+08:00"

28.UE5游戏框架,事件分发器,蓝图接口

3-3 虚幻游戏框架拆解,游戏规则基础_哔哩哔哩_bilibili 目录 1.游戏架构 2.事件分发器 2.1UI控件中的事件分发器 2.2Actor蓝图中的事件分发器 2.2.1动态决定Actor的分发事件 2.2.2父类中定义事件分发器,子类实现事件分发器 2.3组件蓝图中实现事件…

P1 练习卷(C++4道题)

1.纷繁世界 内存限制:256MB 时间限制:1s 问题描述 这是一个纷繁复杂的世界。 某一天清晨你起床很迟,没有吃上早饭。于是你骑着自行车去超市,但是你又发现商店的工作人员已经重新贴上了价格标签,零食价格都涨了50%。你…