机器人SLAM建图与自主导航:从基础到实践

news2024/11/24 5:37:10

前言

这篇文章我开始和大家一起探讨机器人SLAM建图与自主导航 ,在前面的内容中,我们介绍了差速轮式机器人的概念及应用,谈到了使用Gazebo平台搭建仿真环境的教程,主要是利用gmapping slam算法,生成一张二维的仿真环境地图 。我们也会在这篇文章中继续介绍并使用这片二维的仿真环境地图,用于我们的演示。

教程

SLAM算法的引入

(1)SLAM:Simultaneous Localization and Mapping,中文是即时定位与地图构建,所谓的SLAM算法准确说是能实现SLAM功能的算法,而不是某一个具体算法。

(2)现在各种机器人研发和商用化非常火 ,所有的自主机器人都绕不开一个问题,即在陌生环境中,需要知道周边是啥样(建图),需要知道我在哪(定位),于是有了SLAM 课题的研究。SLAM在室内机器人,自动驾驶汽车建图,VR/AR穿戴等领域都有广泛的应用。

(3)SLAM算法根据依赖的传感器不同,可以分为激光SLAM和视觉SLAM,前者是激光雷达,后者是能提供深度信息的摄像头,如双目摄像头,红外摄像头等。除此之外,SLAM算法通常还依赖里程计提供距离信息,否则地图很难无缝的拼接起来,很容易跑飞。一个经典的SLAM 流程框架如下,其中回环检测时为了判断机器人有没有来过之前的位置。

整体视觉SLAM的流程图

gmapping算法的基本原理

(1)现在ROS里有一系列SLAM算法包,如:gmapping ,hector(不需要里程计,比较特别),谷歌开源的cartographer(效率高),rtabmap(前面是二维的,这是三维建图)等。

(2)gmapping是基于激光雷达的,需要里程计信息,创建二维格栅地图。其中IMU信息可以没有 。

(3)ros中激光雷达数据消息是 sensor_msgs/LaserScan ,内容如下:

(4)ros中里程计数据消息是 nav_msgs/Odometry 。

(5)gmapping 发布的地图meta数据:

(6)gmapping 发布的地图栅格数据

mbot_navigation

(1)ubuntu20.04 + ros noetic下,安装gmapping和保存地图文件的map_server

sudo apt-get install ros-noetic-gmapping
sudo apt-get install ros-noetic-map-server
// 补充:这是安装hector
sudo apt-get install ros-noetic-hector-slam

(2)创建 mbot_navigation 和相关文件

cd ~/catkin_ws/src
catkin_create_pkg mbot_navigation geometry_msgs move_base_msgs actionlib roscpp rospy

cd mbot_navigation 
mkdir launch maps rviz
touch launch/gmapping.launch

(3)调用gmapping算法,只需要写launch文件就行了,不用编码。gmapping.launch

<launch>
	// mbot_gazebo 会通过发/scan topic,传出lidar数据
    <arg name="scan_topic" default="scan" />
    // gammping一大堆参数,这里都是从他的demo里扣出来的,不用改。
    // 如果想用的好,可以尝试修改,甚至改一些代码,这就是算法(调参)工程师!
    <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen" clear_params="true">
    	// mbot_gazebo 会通过发/odom topic,传出里程计数据
        <param name="odom_frame" value="odom"/>
        <param name="map_update_interval" value="5.0"/>
        <!-- Set maxUrange < actual maximum range of the Laser -->
        <param name="maxRange" value="5.0"/>
        <param name="maxUrange" value="4.5"/>
        <param name="sigma" value="0.05"/>
        <param name="kernelSize" value="1"/>
        <param name="lstep" value="0.05"/>
        <param name="astep" value="0.05"/>
        <param name="iterations" value="5"/>
        <param name="lsigma" value="0.075"/>
        <param name="ogain" value="3.0"/>
        <param name="lskip" value="0"/>
        <param name="srr" value="0.01"/>
        <param name="srt" value="0.02"/>
        <param name="str" value="0.01"/>
        <param name="stt" value="0.02"/>
        <param name="linearUpdate" value="0.5"/>
        <param name="angularUpdate" value="0.436"/>
        <param name="temporalUpdate" value="-1.0"/>
        <param name="resampleThreshold" value="0.5"/>
        <param name="particles" value="80"/>
        <param name="xmin" value="-1.0"/>
        <param name="ymin" value="-1.0"/>
        <param name="xmax" value="1.0"/>
        <param name="ymax" value="1.0"/>
        <param name="delta" value="0.05"/>
        <param name="llsamplerange" value="0.01"/>
        <param name="llsamplestep" value="0.01"/>
        <param name="lasamplerange" value="0.005"/>
        <param name="lasamplestep" value="0.005"/>
        <remap from="scan" to="$(arg scan_topic)"/>
    </node>
	// 保存的rviz配置文件
    <node pkg="rviz" type="rviz" name="rviz" args="-d $(find mbot_navigation)/rviz/map.rviz"/>
</launch>

(4)连同mbot_gazebo,一起编译运行

cd ~/catkin_ws
catkin_make -DCATKIN_WHITELIST_PACKAGES="mbot_navigation;mbot_gazebo"
source devel/setup.bash
// 打开仿真环境
roslaunch mbot_gazebo mbot_gazebo.launch
//再开一个窗口,打开gmapping
roslaunch mbot_navigation gmapping.launch
// 控制机器人行动,进行建图
roslaunch mbot_gazebo mbot_teletop.launch
// 建图完成后,新开窗口,执行map_server,保存生成的地图
cd ~/catkin_ws/src/mbot_navigation/maps
rosrun map_server map_saver -f gmapping_save

最终保存下来的地图

总结

在github上面的访问地址:https://github.com/Jieshoudaxue/ros_senior/tree/main/mbot_navigation/config/move_base

代码示例:

#include <ros/ros.h>
#include <list>
#include <geometry_msgs/Pose.h>
#include <move_base_msgs/MoveBaseAction.h>
#include <actionlib/client/simple_action_client.h>

geometry_msgs::Pose createPose(double px, double py, double pz, double ox, double oy, double oz, double ow) {
    geometry_msgs::Pose pose;
    pose.position.x = px;
    pose.position.y = py;
    pose.position.z = pz;
    pose.orientation.x = ox;
    pose.orientation.y = oy;
    pose.orientation.z = oz;
    pose.orientation.w = ow;
    return pose;  
}

int main(int argc, char** argv) {
  ros::init(argc, argv, "move_test");

  actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> move_base_client("move_base", true);

  ROS_INFO("Waiting for move_base action server...");  
  move_base_client.waitForServer();
  ROS_INFO("connected to move base server");

  std::vector<geometry_msgs::Pose> target_list;
  target_list.push_back(createPose(6.543, 4.779, 0.000, 0.000, 0.000, 0.645, 0.764));
  target_list.push_back(createPose(5.543, -4.779, 0.000, 0.000, 0.000, 0.645, 0.764));
  target_list.push_back(createPose(-5.543, 4.779, 0.000, 0.000, 0.000, 0.645, 0.764));
  target_list.push_back(createPose(-5.543, -4.779, 0.000, 0.000, 0.000, 0.645, 0.764));

  for (uint8_t i = 0; i < target_list.size(); i ++) {
    ros::Time start_time = ros::Time::now();

    ROS_INFO("going to %u goal, position: (%f, %f)", i, target_list[i].position.x, target_list[i].position.y);

    move_base_msgs::MoveBaseGoal goal;
    goal.target_pose.header.frame_id = "map";
    goal.target_pose.header.stamp = ros::Time::now();

    goal.target_pose.pose = target_list[i];

    move_base_client.sendGoal(goal);

    move_base_client.waitForResult();

    if (move_base_client.getState() == actionlib::SimpleClientGoalState::SUCCEEDED) {
      ros::Duration running_time =  ros::Time::now() - start_time;
      ROS_INFO("go to %u goal succeeded, running time %f sec", i, running_time.toSec());
    } else {
      ROS_INFO("goal failed");
    }

  }



  return 0;
}

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
YOLO-specific modules

Usage:
    $ python path/to/models/yolo.py --cfg yolov5s.yaml
"""

import argparse
import sys
from copy import deepcopy
from pathlib import Path

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd())  # relative

from models.common import *
from models.experimental import *
from utils.autoanchor import check_anchor_order
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
from utils.plots import feature_visualization
from utils.torch_utils import fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device, time_sync

try:
    import thop  # for FLOPs computation
except ImportError:
    thop = None


class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid


class Model(nn.Module):
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg, encoding='ascii', errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once

        # Init weights, biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')

    def forward(self, x, augment=False, profile=False, visualize=False):
        if augment:
            return self._forward_augment(x)  # augmented inference, None
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

    def _forward_augment(self, x):
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, 1), None  # augmented inference, train

    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            p[..., :4] /= scale  # de-scale
            if flips == 2:
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3:
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p

    def _clip_augmented(self, y):
        # Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][:, :-i]  # large
        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][:, i:]  # small
        return y

    def _profile_one_layer(self, m, x, dt):
        c = isinstance(m, Detect)  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

    def _print_biases(self):
        m = self.model[-1]  # Detect() module
        for mi in m.m:  # from
            b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
            LOGGER.info(
                ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))

    # def _print_weights(self):
    #     for m in self.model.modules():
    #         if type(m) is Bottleneck:
    #             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights

    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()
        return self

    def info(self, verbose=False, img_size=640):  # print model information
        model_info(self, verbose, img_size)

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self


def parse_model(d, ch):  # model_dict, input_channels(3)
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except NameError:
                pass

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m is Detect:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--profile', action='store_true', help='profile model speed')
    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
    opt = parser.parse_args()
    opt.cfg = check_yaml(opt.cfg)  # check YAML
    print_args(FILE.stem, opt)
    device = select_device(opt.device)

    # Create model
    model = Model(opt.cfg).to(device)
    model.train()

    # Profile
    if opt.profile:
        img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
        y = model(img, profile=True)

    # Test all models
    if opt.test:
        for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
            try:
                _ = Model(cfg)
            except Exception as e:
                print(f'Error in {cfg}: {e}')

    # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
    # from torch.utils.tensorboard import SummaryWriter
    # tb_writer = SummaryWriter('.')
    # LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
    # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), [])  # add model graph

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2246465.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在线解析工具链接

在线字数统计工具-统计字符字节汉字数字标点符号-计算word文章字数字数统计,字符统计,字节统计,字数计算,统计字数,统计字节数,统计字符数,统计word字数,在线字数统计,在线查字数,计算字数,字数统计工具,支持手机移动端查询多少字数,英文:Calculate the number of words,Count …

学习Servlet(含义,作用)

目录 前言 Servlet 的含义 Servlet 的作用 前言 一个完整的前后端项目&#xff0c;是需要前端和后端&#xff08;Java实现&#xff09;共同完成的。那应该如何实现前后端进行交互呢&#xff1f;答案&#xff1a;使用Servlet实现前后端交互 我会从了解Servlet的含义&…

从源码到应用:在线教育系统与教培网校APP开发实战指南

时下&#xff0c;各类教培网校APP逐渐成为教育机构的核心工具。那么&#xff0c;如何从源码出发&#xff0c;开发一套符合需求的在线教育系统与教培网校APP&#xff1f;本文将从架构设计、功能实现到部署上线&#xff0c;提供一份全面的开发实战指南。 一、在线教育系统的核心架…

Pyqt5的簡單教程

簡介 pyqt5是qt的Python版本&#xff0c;因為最近需要做一個有界面的程式&#xff0c;所以想到這個庫&#xff0c;這裡就稍微介紹它的安裝和使用教程 1.安裝qt5 可能需要安裝vs的c編譯組件 pip install pyQt52.使用拖拽組件編寫頁面 使用此工具打開組件 ctrls 生成.ui文件 …

---Arrays类

一 java 1.Arrays类 1.1 toString&#xff08;&#xff09; 1.2 arrays.sort( )-----sort排序 1&#xff09;直接调用sort&#xff08;&#xff09; Arrays.sort() 方法的默认排序顺序是 从小到大&#xff08;升序&#xff09;。 2&#xff09;定制排序【具体使用时 调整正负…

STM32F4----ADC模拟量转换成数字量

STM32F4----ADC模拟量转换成数字量 基本原理 当需要测量和记录外部电压的变化&#xff0c;或者根据外部电压的变化量来决定是否触发某个动作时&#xff0c;我们可以使用ADC&#xff08;模拟—数字转换器&#xff09;功能。这个功能可以将模拟的电压信号转换为数字信号&#x…

《Python 股票交易分析:开启智能投资新时代》(二)

Python 进行股票交易分析的优势 简洁易读&#xff1a;Python 的语法简洁明了&#xff0c;即使是编程新手也能较快上手&#xff0c;降低了股票交易分析的门槛。 Python 的简洁易读是其在股票交易分析中受欢迎的重要原因之一。Python 的语法简洁明了&#xff0c;与其他编程语言相…

python程序的编写以及发布(形象类比)

最近重新接触python&#xff0c;本人之前对于python的虚拟环境&#xff0c;安装包比较比较迷惑&#xff0c;这里给出一个具象的理解。可以将 Python 程序运行的过程类比成一次 做菜的过程&#xff0c;从准备食材到最后出锅。以下是具体的类比步骤&#xff1a; 1. 安装 Python 环…

ThinkPad t61p 作SMB服务器,打印服务器,pc ,android ,ipad利用此服务器互传文件

1.在t61p上安装win7 2,配置好smb 服务 3.再安装好打印驱动程序 4.pc与win7利用系统的网络互相发现,映射为硬盘使用。 5.android&#xff0c;ipad安装ES文件浏览器访问win7 共享文件夹&#xff0c;互传文件。 6.android手机安装FE文件浏览器&#xff0c;可以利用花生壳外网…

C# 属性 学习理解记录

字段和属性 左边字段&#xff0c;右边属性 拓展&#xff0c;属性安全&#xff1a; 1、设置public private 和protected 等&#xff0c;只读&#xff0c;只写&#xff0c; 2、在get set 方法时&#xff0c;验证&#xff0c;异常时抛出错误

决策树分类算法【sklearn/决策树分裂指标/鸢尾花分类实战】

决策树分类算法 1. 什么是决策树&#xff1f;2. DecisionTreeClassifier的使用&#xff08;sklearn&#xff09;2.1 算例介绍2.2 构建决策树并实现可视化 3. 决策树分裂指标3.1 信息熵&#xff08;ID3&#xff09;3.2 信息增益3.3 基尼指数&#xff08;CART&#xff09; 4. 代码…

CentOS使用中遇到的问题及解决方法

一、CentOS 7网络配置&#xff08;安装后无法联网问题&#xff09; 现象说明 在安装CentOS系统后&#xff0c;有可能出现无法联网的问题&#xff0c;虚拟机中的网络配置并没有问题&#xff0c;而系统却无法联网,也ping不通。 原因描述 CentOS默认开机不启动网络&#xff0c;因…

硬件知识 cadence16.6 原理图输出为pdf 网络名下划线偏移 (ORCAD)

1. cadence原理图输出为PDF网络名下划线偏移 生这种情况的原因 1. 设计的原理图图纸大小比正常的 A4图纸大。 2. 打印为PDF 的时候&#xff0c;打印机的设置有问题。 2.cadence原理图输出为 PDF网络名下划线偏移的情况 可以看到上图&#xff0c;网络名往上漂移。 3. 解决办法 …

Hash table类算法【leetcode】

哈希表中关键码就是数组的索引下标&#xff0c;然后通过下标直接访问数组中的元素 那么哈希表能解决什么问题呢&#xff0c;一般哈希表都是用来快速判断一个元素是否出现集合里。 例如要查询一个名字是否在这所学校里。 要枚举的话时间复杂度是O(n)&#xff0c;但如果使用哈希…

利用c语言详细介绍下希尔排序

希尔排序是针对插入排序的优化算法。它是缩少增量的算法&#xff0c;一开始增量从元素个数len/2的增量开始&#xff0c;然后缩小增量gapgap/2&#xff0c;直到gap为1&#xff0c;最终完成序列排序。 一、图文介绍 我们还是使用数组【10&#xff0c;5&#xff0c;3&#xff0c;2…

Flutter踩坑记录(三)-- 更改入口执行文件

我们在flutter 中可能不习惯默认的lib/main.dart 作为入口文件&#xff0c;会修改成index.dart 或者修改main.dart的位置, 用Andorid studio开发 如果我们用Andorid studio开发&#xff0c;默认修改一下配置地址 运行项目即可。 用VSCode开发 如果我们使用VSCode开发&…

C#桌面应用制作计算器进阶版01

基于C#桌面应用制作计算器做出了少量改动&#xff0c;其主要改动为新增加了一个label控件&#xff0c;使其每一步运算结果由label2展示出来&#xff0c;而当点击“”时&#xff0c;最终运算结果将由label1展示出来&#xff0c;此时label清空。 修改后运行效果 修改后全篇代码 …

应用商店双弹窗“APP在向用户申请权限时未同步告知用户申请此权限的理由”驳回uni-app应用上线的解决方法

目录 问题分析 解决方法 下载插件包&#xff1a;x-perm-apply-instr 将插件包导入进你项目中的uni_modules文件夹 在项目中的main.js文件中添加以下代码 完成 其它注意事项 addPermisionInterceptor 添加 uniApi 调用拦截 removePermisionInterceptor 移除 uniApi 调用…

dockerfile构建Nginx镜像练习二(5-2)

环境准备&#xff1a; (1)保证拥有centos基础镜像 docker images | grep centos (2)服务器保证可以连接外网 1.创建工作目录 mkdir nginx cd nginx 2.在工作目录中创建并编写Dockerfile文件 vim dockerfile #定义基础镜像 FROM centos:7#维护者信息(可缺省) MAINTAINER d…

Java 调用 MULTIPART_FORM_DATA 接口

以 QAnthing 上传文件&#xff08;POST&#xff09;接口为例&#xff0c;展示Java如何调用上传文件接口。 接口文档如下&#xff1a; QAnthign接口文档地址 编码 RestTemplate 版 /** * * param url 接口地址 * param filePath 文件本地路径 */ public void uploadFile(S…