Elasticsearch 中的热点以及如何使用 AutoOps 解决它们

news2024/12/28 18:27:19

作者:来自 Elastic Sachin Frayne

探索 Elasticsearch 中的热点以及如何使用 AutoOps 解决它。

Elasticsearch 集群中出现热点的方式有很多种。有些我们可以控制,比如吵闹的邻居,有些我们控制得较差,比如 Elasticsearch 中的分片分配算法。好消息是,新的 desire_balance cluster.routing.allocation.type 算法(参见 shards-rebalancing-heuristics)在确定集群中的哪些节点应该获得新分片方面要好得多。如果存在不平衡,它会为我们找出最佳平衡。坏消息是,较旧的 Elasticsearch 集群仍在使用平衡(balanced)分配算法,该算法的计算能力较有限,在选择节点时容易出错,从而导致集群不平衡或出现热点。

在这篇博客中,我们将探讨这种旧算法,它应该如何工作以及何时不起作用,以及我们可以做些什么来解决这个问题。然后,我们将介绍新算法以及它如何解决这个问题,最后,我们将研究如何使用 AutoOps 来针对客户用例突出显示这个问题。然而,我们不会深入探讨热点的所有原因,也不会深入探讨所有具体的解决方案,因为它们太多了。

什么是 AutoOps?

平衡分配

在 Elasticsearch 8.5 及更早版本中,我们使用以下方法来确定在哪个节点放置分片,此方法主要归结为选择分片数量最少的节点:https://github.com/elastic/elasticsearch/blob/8.5/server/src/main/java/org/elasticsearch/cluster/routing/allocation/allocator/BalancedShardsAllocator.java#L242

float weight(Balancer balancer, ModelNode node, String index) {
    final float weightShard = node.numShards() - balancer.avgShardsPerNode();
    final float weightIndex = node.numShards(index) - balancer.avgShardsPerNode(index);
    return theta0 * weightShard + theta1 * weightIndex;
}
  • node.numShards():分配给集群中特定节点的分片数量
  • balancer.avgShardsPerNode():集群中所有节点的分片平均值
  • node.numShards(index):分配给集群中特定节点的特定索引的分片数量
  • balancer.avgShardsPerNode(index):集群中所有节点的特定索引的分片平均值
  • theta0:(cluster.routing.allocation.balance.shard) 分片总数的权重因子,默认为 0.45f,增加该值会增加均衡每个节点分片数量的趋势(请参阅  Shard balancing heuristics settings)
  • theta1:(cluster.routing.allocation.balance.index) 每个索引分片总数的权重因子,默认为 0.55f,增加该值会增加均衡每个索引分片数量的趋势每个节点(请参阅 Shard balancing heuristics settings)

该算法在整个集群中的目标值是以这样的方式选择一个节点,使得集群中所有节点的权重回到 0 或最接近 0。

示例

让我们探讨这样一种情况:我们有 2 个节点,其中 1 个索引由 3 个主分片组成,并且假设我们在节点 1 上有 1 个分片,在节点 2 上有 2 个分片。当我们向具有 1 个分片的集群添加新索引时会发生什么?

由于新索引在集群中的其他任何地方都没有分片,因此 weightIndex 项减少到 0,我们可以在下一个计算中看到,将分片添加到节点 1 将使余额回到 0,因此我们选择节点 1。

现在让我们添加另一个包含 2 个分片的索引,由于现在已达到平衡,因此第一个分片将随机分配到其中一个节点。假设节点 1 被选为第一个分片,则第二个分片将分配到节点 2。

新的平衡最终将是:

如果集群中的所有索引/分片在采集、搜索和存储要求方面都执行大致相同的工作量,则此算法将很好地发挥作用。实际上,大多数 Elasticsearch 用例并不这么简单,并且分片之间的负载并不总是相同的,请想象以下场景。

图 1:Elasticsearch 集群(夸张的分片大小表示分片实际上有多“繁忙”)
  • 索引 1,小型搜索用例,包含几千个文档,分片数量不正确;
  • 索引 2,索引非常大,但未被主动写入且偶尔搜索;
  • 索引 3,轻量级索引和搜索;
  • 索引 4,重度摄取应用程序日志。

假设我们有 3 个节点和 4 个索引,它们只有主分片,并且故意处于不平衡状态。为了直观地了解正在发生的事情,我根据分片的繁忙程度以及繁忙的含义(写入、读取、CPU、RAM 或存储)夸大了分片的大小。即使节点 3 已经拥有最繁忙的索引,新的分片也会路由到该节点。索引生命周期管理 (ILM) 不会为我们解决这种情况,当索引滚动时,新的分片将放置在节点 3 上。我们可以手动缓解这个问题,强制 Elasticsearch 使用集群重新(cluster reroute)路由均匀分布分片,但这无法扩展,因为我们的分布式系统应该处理这个问题。尽管如此,如果没有任何重新平衡或其他干预措施,这种情况将继续存在,并可能变得更糟。此外,虽然这个例子是假的,但这种分布在具有混合用例(即搜索、日志记录、安全)的旧 Elasticsearch 集群中是不可避免的,尤其是当一个或多个用例是重度摄取时,确定何时会发生这种情况并不是一件容易的事。

虽然预测这个问题的时间范围很复杂,但在某些情况下行之有效的一个好的解决方案是保持所有索引的分片密度相同,这是通过在所有索引的分片达到预定大小(以 GB 为单位)时滚动所有索引来实现的(请参阅分片大小 -  size your shards)。这并不适用于所有用例,正如我们将在下面 AutoOps 捕获的集群中看到的那样。

所期望的平衡分配

为了解决这个问题和其他一些问题,一种可以同时考虑写入负载和磁盘使用情况的新算法最初在 8.6 中发布,并在 8.7 和 8.8 版本中进行了一些微小但有意义的更改:https://github.com/elastic/elasticsearch/blob/8.8/server/src/main/java/org/elasticsearch/cluster/routing/allocation/allocator/BalancedShardsAllocator.java#L305

float weight(Balancer balancer, ModelNode node, String index) {
    final float weightShard = node.numShards() - balancer.avgShardsPerNode();
    final float weightIndex = node.numShards(index) - balancer.avgShardsPerNode(index);
    final float ingestLoad = (float) (node.writeLoad() - balancer.avgWriteLoadPerNode());
    final float diskUsage = (float) (node.diskUsageInBytes() - balancer.avgDiskUsageInBytesPerNode());
    return theta0 * weightShard + theta1 * weightIndex + theta2 * ingestLoad + theta3 * diskUsage;
}
  • node.writeLoad():特定节点的写入或索引负载
  • balancer.avgWriteLoadPerNode():整个集群的平均写入负载
  • node.diskUsageInBytes():特定节点的磁盘使用情况
  • balancer.avgDiskUsageInBytesPerNode():整个集群的平均磁盘使用情况
  • theta2:(cluster.routing.allocation.balance.write_load)写入负载的权重因子,默认为 10.0f,增加该值会增加均衡每个节点的写入负载的趋势(请参阅 Shard balancing heuristics settings)
  • theta3:(cluster.routing.allocation.balance.disk_usage)磁盘使用情况的权重因子,默认为 2e-11f,增加该值会增加均衡每个节点的磁盘使用情况的趋势(请参阅 Shard balancing heuristics settings)

我不会在本博客中详细介绍此算法所做的计算,但是 Elasticsearch 用于决定分片应位于何处的数据可通过 API 获取:获取所需平衡(Get desired balance)。在调整分片大小时,遵循我们的指导仍然是最佳实践,并且仍然有充分的理由将用例分离到专用的 Elasticsearch 集群中。然而,此算法在平衡 Elasticsearch 方面要好得多,以至于它为我们的客户解决了以下平衡问题。(如果你遇到本博客中描述的问题,我建议你升级到 8.8)。

最后要注意的是,此算法没有考虑搜索负载,这很难衡量,甚至更难预测。6.1 中引入的自适应副本选择(Adaptive replica selection)对解决搜索负载大有帮助。在未来的博客中,我们将深入探讨搜索性能的主题,特别是如何使用 AutoOps 在搜索性能问题发生之前发现它们。

在 AutoOps 中检测热点

上述情况不仅难以预测,而且一旦发生也难以检测,我们需要对 Elasticsearch 有深入的内部了解,并且我们的集群需要满足非常具体的条件才能处于这种状态。

现在,使用 AutoOps 检测这个问题就轻而易举了。让我们看一个真实的例子;

在这个设置中,Elasticsearch 前面有一个排队机制,用于处理数据峰值,但是用例是近实时日志 - 持续的滞后是不可接受的。我们遇到了持续滞后的情况,必须进行故障排除。从集群视图开始,我们获取了一些有用的信息,在下图中我们了解到有 3 个主节点、8 个数据节点(以及 3 个与案例无关的其他节点)。我们还了解到集群是红色的(这可能是网络或性能问题),版本是 8.5.1,有 6355 个分片;最后这两个将在以后变得重要。

图片 2:集群信息

这个集群中发生了很多事情,它经常变成红色,这些都与离开集群的节点有关。节点离开集群的时间大约在我们观察到索引拒绝的时间,并且拒绝发生在索引队列过于频繁地填满后不久,黄色越深,时间块中的高索引事件越多。

图 3:集群中事件的时间线(重点突出数据节点断开连接)

转到节点视图并关注最后一个节点断开连接的时间范围,我们可以看到另一个节点(节点 9)的索引率比其他节点高得多,其次是节点 4,该节点在本月早些时候曾出现过一些断开连接的情况。你还会注意到,在同一时间范围内索引率下降幅度相当大,这实际上也与此特定集群中计算资源和存储之间的间歇性延迟有关。

图4:数据节点9,索引率高。

默认情况下,AutoOps 只会报告断开连接时间超过 300 秒的节点,但我们知道包括节点 9 在内的其他节点经常离开集群,如下图所示,节点上的分片数量增长太快,无法移动分片,因此在节点断开连接/重新启动后,它们必须重新初始化。有了这些信息,我们可以放心地得出结论,集群正在经历性能问题,但不仅仅是热点性能问题。由于 Elasticsearch 以集群的形式工作,它只能以最慢的节点的速度运行,而且由于节点 9 被要求比其他节点做更多的工作,它无法跟上,其他节点总是在等待它,偶尔也会断开连接。

图5:数据节点9,分片数量增加。

此时我们不需要更多信息,但为了进一步说明 AutoOps 的强大功能,下面是另一张图像,该图像显示了节点 9 比其他节点执行了多少工作,特别是它写入磁盘的数据量。

图 6:磁盘写入和 IOPS。

我们决定将所有分片从节点 9 移出,方法是将它们随机发送到集群中的其他节点;这是通过以下命令实现的。此后,整个集群的索引性能得到改善,延迟消失。

PUT /_cluster/settings
{
  "transient": {
    "cluster.routing.allocation.exclude._name": "****-data-9"
  }
}

现在我们已经观察、确认并解决了该问题,我们需要找到一个长期的解决方案,这又让我们回到了博客开头的技术分析。我们遵循最佳实践,分片以预定的大小滚动,甚至限制每个节点特定索引的分片数量。我们遇到了算法无法处理的边缘情况,即索引繁重且频繁滚动的索引。

我们考虑过是否可以手动重新平衡集群,但对于由 6355 个分片组成的约 2000 个索引,这并非易事,更不用说,在这种级别的索引下,我们将与 ILM 竞争重新平衡。这正是新算法的设计目的,因此我们的最终建议是升级集群。

最后的想法

本博客总结了一组相当具体但复杂的情况,这些情况可能会导致 Elasticsearch 性能出现问题。你今天甚至可能会在集群中看到其中一些问题,但可能永远不会像这个用户那样严重地影响集群。这个案例强调了跟上 Elasticsearch 最新版本的重要性,以便始终利用最新的创新来更好地管理数据,它有助于展示 AutoOps 在发现/诊断问题并提醒我们注意问题方面的强大功能,以免它们成为全面生产事件。

考虑迁移到至少 8.8 版 https://www.elastic.co/guide/en/elasticsearch/reference/8.8/migrating-8.8.html

Elasticsearch 包含许多新功能,可帮助你为你的用例构建最佳搜索解决方案。深入了解我们的示例笔记本以了解更多信息,开始免费云试用,或立即在你的本地机器上试用 Elastic。

原文:Hotspots in Elasticsearch and how to resolve them with AutoOps - Search Labs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2245605.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Matlab多输入单输出之倾斜手写数字识别

本文主要介绍使用matlab构建多输入单输出的网络架构,来实现倾斜的手写数字识别,使用concatenationLayer来拼接特征,实现网络输入多个特征。 1.加载训练数据 加载数据:手写数字的图像、真实数字标签和数字顺时针旋转的角度。 lo…

Nacos实现IP动态黑白名单过滤

一些恶意用户(可能是黑客、爬虫、DDoS 攻击者)可能频繁请求服务器资源,导致资源占用过高。因此我们需要一定的手段实时阻止可疑或恶意的用户,减少攻击风险。 本次练习使用到的是Nacos配合布隆过滤器实现动态IP黑白名单过滤 文章…

如何在Word文件中设置水印以及如何禁止修改水印

在日常办公和学习中,我们经常需要在Word文档中设置水印,以保护文件的版权或标明文件的机密性。水印可以是文字形式,也可以是图片形式,能够灵活地适应不同的需求。但仅仅设置水印是不够的,有时我们还需要确保水印不被随…

测试工程师如何在面试中脱颖而出

目录 1.平时工作中是怎么去测的? 2.B/S架构和C/S架构区别 3.B/S架构的系统从哪些点去测? 4.你为什么能够做测试这一行?(根据个人情况分析理解) 5.你认为测试的目的是什么? 6.软件测试的流程&#xff…

jenkins的安装(War包安装)

‌Jenkins是一个开源的持续集成工具,基于Java开发,主要用于监控持续的软件版本发布和测试项目。‌ 它提供了一个开放易用的平台,使软件项目能够实现持续集成。Jenkins的功能包括持续的软件版本发布和测试项目,以及监控外部调用执行…

无线感知会议系列【15】DPSense-2

接: 无线感知会议系列【15】DPSense-1 目录: 实验 讨论 结论 附录 一 实验 在本节中,我们通过全面的实验验证了所提出的DPSense系统的有效性。首先,我们将我们的方法与三种最先进的技术进行了比较。然后&#xff0c…

AI编程入门指南002:API、数据库和应用部署

进阶概念教程:API、数据库和应用部署 在学习了编程的基础概念后,我们将进入更高级的内容。本文将详细介绍API、数据库和应用部署三个进阶概念,并通过丰富的示例和形象的说明帮助你更好地理解这些内容。 1. API(应用程序接口&#…

Docker3:docker基础1

欢迎来到“雪碧聊技术”CSDN博客! 在这里,您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者,还是具有一定经验的开发者,相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导,我将…

《Django 5 By Example》阅读笔记:p645-p650

《Django 5 By Example》学习第8天,p645-p650总结,总计6页。 一、技术总结 1.django-rest-framework (1)serializer p648, Serializer: Provides serialization for normal Python class instances。Serializer又细分为Serializer, ModelSerializer,…

【机器学习】回归模型(线性回归+逻辑回归)原理详解

线性回归 Linear Regression 1 概述 线性回归类似高中的线性规划题目。线性回归要做的是就是找到一个数学公式能相对较完美地把所有自变量组合(加减乘除)起来,得到的结果和目标接近。 线性回归分为一元线性回归和多元线性回归。 2 一元线…

【大模型推理】vLLM 源码学习

强烈推荐 https://zhuanlan.zhihu.com/p/680153425 sequnceGroup 存储了相同的prompt对应的不同的sequence, 所以用字典存储 同一个Sequence可能占据多个逻辑Block, 所以在Sequence 中用列表存储 同一个block 要维护tokens_id 列表, 需要添加操作。 还需要判断blo…

FIFO和LRU算法实现操作系统中主存管理

FIFO&#xff0c;用数组实现 1和2都是使用nextReplace实现新页面位置的更新 1、不精确时间&#xff1a;用ctime输出运行时间都是0.00秒 #include <iostream> #include <iomanip> #include<ctime>//用于计算时间 using namespace std;// 页访问顺序 int pa…

【Ubuntu24.04】VirtualBox安装ubuntu-live-server24.04

目录 0 背景1 下载镜像2 安装虚拟机3 安装UbuntuServer24.044 配置基本环境5 总结0 背景 有了远程连接工具之后,似乎作为服务器的Ubuntu24.04桌面版有点备受冷落了,桌面版的Ubuntu24.04的优势是图形化桌面,是作为一个日常工作的系统来用的,就像Windows,如果要作为服务器来…

《SpringBoot、Vue 组装exe与套壳保姆级教学》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…

Flowable第一篇、快速上手(Flowable安装、配置、集成)

目录 Flowable 概述Flowable的安装与配置 2.1. FlowableUI安装 2.2. Flowable BPMN插件下载 2.3 集成Spring Boot流程审核操作 3.3 简单流程部署 3.4 启动流程实例 3.5 流程审批 一、Flowable 概述 Flowable是一个轻量级、高效可扩展的工作流和业务流程管理&#xff08;BPM&…

Docker搭建有UI的私有镜像仓库

Docker搭建有UI的私有镜像仓库 一、使用这个docker-compose.yml文件&#xff1a; version: 3services:registry-ui:image: joxit/docker-registry-ui:2.5.7-debianrestart: alwaysports:- 81:80environment:- SINGLE_REGISTRYtrue- REGISTRY_TITLEAtt Docker Registry UI- DE…

容器安全检测和渗透测试工具

《Java代码审计》http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247484219&idx1&sn73564e316a4c9794019f15dd6b3ba9f6&chksmc0e47a67f793f371e9f6a4fbc06e7929cb1480b7320fae34c32563307df3a28aca49d1a4addd&scene21#wechat_redirect Docker-bench-…

Day10_CSS过度动画

Day10_CSS过度动画 背景 : PC和APP项目我们已经开发完毕, 但是再真正开发的时候有些有些简易的动态效果我们可以使用CSS完成 ; 本节课我们来使用CSS完成基础的动画效果 今日学习目标 CSS3过度CSS3平面动态效果CSS3动画效果案例 1. CSS3过渡 ​ 含义 :过渡指的是元素从一种…

iOS应用网络安全之HTTPS

移动互联网开发中iOS应用的网络安全问题往往被大部分开发者忽略, iOS9和OS X 10.11开始Apple也默认提高了安全配置和要求. 本文以iOS平台App开发中对后台数据接口的安全通信进行解析和加固方法的分析. 1. HTTPS/SSL的基本原理 安全套接字层 (Secure Socket Layer, SSL) 是用来…

excel版数独游戏(已完成)

前段时间一个朋友帮那小孩解数独游戏&#xff0c;让我帮解&#xff0c;我看他用电子表格做&#xff0c;只能显示&#xff0c;不能显示重复&#xff0c;也没有协助解题功能&#xff0c;于是我说帮你做个电子表格版的“解题助手”吧&#xff0c;不能直接解题&#xff0c;但该有的…