【论文速读】| RobustKV:通过键值对驱逐防御大语言模型免受越狱攻击

news2024/11/22 13:16:03

图片

基本信息

原文标题:ROBUSTKV: DEFENDING LARGE LANGUAGE MODELS AGAINST JAILBREAK ATTACKS VIA KV EVICTION

原文作者:Tanqiu Jiang, Zian Wang, Jiacheng Liang, Changjiang Li, Yuhui Wang, Ting Wang

作者单位:Stony Brook University

关键词:越狱攻击、防御策略、大语言模型、KV缓存、攻击规避

原文链接:https://arxiv.org/pdf/2410.19937

开源代码:暂无

论文要点

论文简介:在大语言模型(LLM)的发展中,越狱攻击被认为是一种对模型安全性的严重威胁,攻击者通过巧妙地掩盖恶意查询使得LLM生成不当响应。目前的防御手段主要集中在防范越狱提示词上,但面对越狱提示词的适应性变化效果有限。本研究提出了一种新的防御方法RobustKV,通过策略性地逐出低重要性标记的KV缓存,减少恶意查询对模型响应的影响。实验证明RobustKV在保持模型正常响应的同时,有效抑制了各类越狱攻击,并为对抗适应性攻击提供了新的启示。

研究目的:本研究旨在提出一种无需大幅增加计算负担的越狱攻击防御机制。与传统防御方法不同,RobustKV通过对大语言模型的KV缓存进行优化,选择性地清除恶意查询中低重要性标记的KV值,降低攻击者通过调整提示词逃避防御的成功率,增强了模型的防御能力。

引言

大语言模型在各种任务中展现了优异性能,但也暴露了若干安全隐患,如训练数据泄露、有毒内容生成和恶意微调等。越狱攻击是一类典型的威胁手段,攻击者可以通过在提示词中嵌入恶意查询,绕过模型内置的安全防护,使其生成恶意响应。现有防御措施多集中在调整提示词层面,但由于攻击者可采用任意、动态的方式修改提示词,这种防御策略的局限性逐渐显现。此外,许多现有防御策略带来了计算开销的问题,限制了其实际部署的可行性。RobustKV的提出正是为了解决上述挑战,它通过优化KV缓存,直接削弱恶意查询的效果,避免了对提示词的过分依赖,且显著减少了计算成本。此策略为对抗越狱攻击提供了新的思路。

相关工作

现有研究主要聚焦于越狱攻击和防御方法。越狱攻击可以分为手工设计和基于学习的自动化生成,其中以GCG、AutoDAN等为代表的学习型攻击具备较强的适应性,能动态调整提示词以绕过防御。现有防御手段,如SmoothLLM和GoalPriority,多数针对提示词进行调整,通过扰动、优先指令等手段干扰攻击效果。然而,这些防御策略在面对灵活的越狱攻击时往往力不从心。此外,一些KV缓存优化方法(如SnapKV等)主要用于模型性能优化,未在越狱防御中得到广泛应用。RobustKV填补了这一空白,通过KV缓存逐出实现了更有效的防御。

研究背景

研究背景主要聚焦在大语言模型的威胁模型和KV缓存的重要性。攻击者通常通过伪装查询(即越狱提示词)混淆模型,从而生成恶意响应。为了使攻击有效,提示词中所包含的标记需要具备足够的“重要性”,而越狱提示词相对自由,恶意查询则需精准表述恶意信息。RobustKV正是基于这一观察,策略性地清除KV缓存中不重要的标记,从而抑制恶意查询的影响。此方法开辟了利用KV缓存优化技术防御越狱攻击的新途径。

图片

研究方法

RobustKV的研究方法旨在通过精确的KV缓存管理来削弱恶意查询的效果。具体步骤分为三部分:

(1)注意力剖析:首先对输入提示词进行编码,收集标记在模型内各层注意力头中的权重分布,计算出每个标记的重要性。通过这种重要性分析,RobustKV能够识别出哪些标记在实现越狱攻击中是关键性的,哪些相对不重要。

(2)选择性逐出:根据标记的注意力权重,将重要性最低的一部分标记从模型的KV缓存中剔除。通过这种方式,RobustKV有效地减少了恶意查询在模型生成响应时的影响力,使得模型难以根据提示生成完整的恶意回应。

(3)响应生成:在执行KV缓存逐出后,模型继续完成剩余的推理过程生成响应,确保对普通查询的回答不产生影响。与传统防御策略不同,RobustKV通过精细的KV逐出设计,实现了对越狱攻击的高度抑制,既保持了模型对良性查询的响应质量,也在恶意查询的生成上增加了攻击者规避防御的难度。这种方法在有效性和计算效率上实现了创新,为LLM越狱防御提供了全新思路。

研究评估

实验设置:研究在Llama2、Vicuna等主流开源模型上评估了RobustKV的效果,采用了520条来自AdvBench的恶意提示词数据集,以及AlpacaEval和VicunaEval等数据集用于评估模型的正常响应性能。

防御有效性:结果表明,RobustKV在抑制AutoDAN、GCG等攻击中的成功率上显著优于现有的防御方法,尤其在面对较强的安全防护时(如Llama2),更能有效压制恶意查询。同时,与现有的KV逐出方法相比,RobustKV表现出了更高的越狱防御效率。

图片

LLM UTILITY:在评估对正常响应的影响时,RobustKV较其他防御措施更能保持模型性能,表现在AlpacaEval和VicunaEval数据集上的得分均接近未防御状态下的模型。

图片

论文结论

RobustKV提供了一种创新的越狱攻击防御手段,通过在LLM的KV缓存中策略性地清除恶意查询相关标记,削弱了恶意查询的存在感,有效阻止了模型生成恶意响应。该方法不仅在性能上超越了现有的防御策略,还提出了对抗适应性攻击的有效手段,为进一步研究KV缓存优化与越狱防御相结合的方向提供了新视角。这项研究为LLM安全性的提升开辟了新的思路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2245339.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

css使用弹性盒,让每个子元素平均等分父元素的4/1大小

css使用弹性盒,让每个子元素平均等分父元素的4/1大小 原本: ul {padding: 0;width: 100%;background-color: rgb(74, 80, 62);display: flex;justify-content: space-between;flex-wrap: wrap;li {/* 每个占4/1 */overflow: hidden;background-color: r…

图像处理 之 凸包和最小外围轮廓生成

“ 最小包围轮廓之美” 一起来欣赏图形之美~ 1.原始图片 男人牵着机器狗 2.轮廓提取 轮廓提取 3.最小包围轮廓 最小包围轮廓 4.凸包 凸包 5.凸包和最小包围轮廓的合照 凸包和最小包围轮廓的合照 上述图片中凸包、最小外围轮廓效果为作者实现算法生成。 图形几何之美系列&#…

徒手从零搭建一套ELK日志平台

徒手从零搭建一套ELK日志平台 日志分析的概述日志分析的作用主要收集工具集中式日志系统主要特点采集日志分类ELK概述初级版ELK终极版ELK高级版ELKELK收集日志的两种形式 搭建ELK平台Logstash工作原理Logstash核心概念环境准备安装部署docker添加镜像加速器安装部署Elasticsear…

【论文阅读】Poison Forensics: Traceback of Data Poisoning Attacks in Neural Networks

Poison Forensics: Traceback of Data Poisoning Attacks in Neural Networks 核心原理前提条件方法第一个问题第二个问题 核心原理 有毒样本会使模型更接近参数空间中的最佳位置,良性样本会使该模型向其随机初始化状态移动 前提条件 最重要的: 可以…

递归算法专题一>反转链表

题目: 解析: 也可以把链表看作一棵树,后续遍历这棵树然后和上图一样,改变指针即可 代码: public ListNode reverseList(ListNode head) {if(head null || head.next null) return head;ListNode newHead revers…

拼音。。。。。。。。。。

拼音。文心一言、文心大模型3.5,竟然说错了,如下图。所以,以后都不想在文心一言搜拼音了。。以后搜拼音,还是在百度一下直接搜,搜到的顶头第一条也是AI智能回答,可能比文心一言更加好更加准 正确的说法是&…

K8S资源限制之LimitRange

LimitRange介绍 LimitRange也是一种资源,在名称空间内有效;限制同一个名称空间下pod容器的申请资源的最大值,最小值pod的resources中requests和limits必须在这个范围内,否则pod无法创建。当然pod也可以不使用resources进行创建ty…

【爬虫】Firecrawl对京东热卖网信息爬取(仅供学习)

项目地址 GitHub - mendableai/firecrawl: 🔥 Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with a single API. Firecrawl更多是使用在LLM大模型知识库的构建,是大模型数据准备中的一环(在…

JavaParser如何获取方法的返回类型

使用JavaParser 如何获取一个Java类中的某个方法的返回类型呢? 假如有一个如下的简单的Java 类: /*** Copyright (C) Oscar Chen(XM):* * Date: 2024-11-21* Author: XM*/ package com.osxm.ai.sdlc.codeparse.codesample;public class MyClass {public…

25.UE5时间膨胀,慢动作,切换地图,刷BOSS

2-27 时间膨胀、慢动作、切换地图、刷BOSS_哔哩哔哩_bilibili 目录 1.刷新BOSS逻辑 2.时间膨胀实现慢动作 3.胜利画面,下一关 3.1胜利画面UI 3.2第一关、第二关游戏模式 3.3下一关按钮事件的绑定 1.刷新BOSS逻辑 实现当场上的怪物都死亡后,进行刷…

【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合

【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合 https://arxiv.org/pdf/2402.10979 目录 文章目录 【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合目录摘要研究背景问题与挑…

数字IC后端设计实现之Innovus place报错案例 (IMPSP-9099,9100三种解决方案)

最近吾爱IC社区星球会员问到跑place_opt_design时会报错退出的情况。小编今天把这个错误解决办法分享给大家。主要分享三个方法,大家可以根据自己的实际情况来选择。 数字IC后端低功耗设计实现案例分享(3个power domain,2个voltage domain) **ERROR: (I…

弧形导轨有什么优势及局限?

弧形导轨的设计允许负载沿着特定的曲线路径移动,这在许多自动化设备中是非常必要的。它具有高强度、刚性和稳定性,能够承受较大的负载和冲击力,并且在高速运动下仍能保持稳定,这使得弧形导轨在需要处理重型负载或进行高速运动的场…

【天壤智能-注册安全分析报告-无验证纯IP限制存在误拦截隐患】

前言 由于网站注册入口容易被机器执行自动化程序攻击,存在如下风险: 暴力破解密码,造成用户信息泄露,不符合国家等级保护的要求。短信盗刷带来的拒绝服务风险 ,造成用户无法登陆、注册,大量收到垃圾短信的…

Linux13 传输层UDP和TCP协议

传输层UDP和TCP协议 1. UDP 协议1.1 UDP协议端格式1.2 UDP特点1.3 UDP 的缓冲区1.4 UDP数据长度1.5 基于 UDP 的应用层协议 2. TCP 协议TCP协议端格式确认应答序号和确认序号位通信机制: 超时重传连接管理三次握手 - 建立连接三次握手与TCPSocket问题 - 为什么要有三…

Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速

11月19日知名人形机器人独角兽公司【Figure AI】发布公司汽车巨头【宝马】最新合作进展,旗下人形机器人Figure 02在生产线上的性能得到了显著提升,机器人组成自主舰队,依托端到端技术,速度提高了400%,执行任务成功率提…

OpenCV 图片处理与绘制

目录 1. 图片处理 1.1 灰度处理 1.1.1 图像灰度化处理 1.1.2 图像灰度化的算法 1.2 图像二值化 1.3 边缘检测 ​编辑 2. 绘图 2.1 绘制线段 2.2 绘制矩形 2.3 绘制圆形 2.4 绘制椭圆 2.5 绘制多边形 2.6 绘制文字图片 1. 图片处理 1.1 灰度处理 将彩色图像转化为…

uniapp 城市选择插件

uniapp城市选择插件 如上图 地址 完整demo <template><view><city-selectcityClick"cityClick":formatName"formatName":activeCity"activeCity":hotCity"hotCity":obtainCitys"obtainCitys":isSearch&quo…

实验室资源调度系统:基于Spring Boot的创新

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统&#xff0c;它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等&#xff0c;非常…

【Triton 教程】融合注意力 (Fused Attention)

Triton 是一种用于并行编程的语言和编译器。它旨在提供一个基于 Python 的编程环境&#xff0c;以高效编写自定义 DNN 计算内核&#xff0c;并能够在现代 GPU 硬件上以最大吞吐量运行。 更多 Triton 中文文档可访问 →https://triton.hyper.ai/ 这是根据 Tri Dao 的 Flash At…