【论文笔记】Large Brain Model (LaBraM, ICLR 2024)

news2024/11/22 5:48:02

在这里插入图片描述

Code: https://github.com/935963004/LaBraM
Data: 无


目录

    • Abstract
    • Introduction
    • Method
      • Neural tokenizer training:
      • Pre-training LaBraM:
    • Results
      • Experimental setup:
      • Pre-training result:
      • Comparison with SOTA:
      • Pre-training with/without downstream datasets:
      • Scaling data size:
    • Conclusion
    • Related work
    • Appendix
      • Effectiveness of VQ:
      • LaBraM without pre-training:
    • Discussion


Abstract

本文介绍了一种新型的大型脑电图(EEG)模型,名为Large Brain Model(LaBraM),旨在克服传统基于EEG的深度学习模型在脑机接口(BCI)应用中的局限性,如模型规模有限、感知能力和泛化性不足。LaBraM通过无监督预训练来获得对EEG信号的通用感知能力,然后可以针对不同的下游任务进行微调。

LaBraM面临的挑战包括EEG数据集规模小、格式差异大、电极数量不匹配、数据样本长度不等、任务设计多样以及信噪比低。为了应对这些挑战,LaBraM通过将EEG信号分割成EEG通道片段,使用向量量化神经谱预测技术训练一个语义丰富的神经tokenizer,将连续的原始EEG通道片段编码成紧凑且离散的神经tokens。然后,通过预测掩蔽EEG通道片段的原始神经tokens来预训练神经Transformer。

LaBraM在约2500小时、来自约20个数据集的多种类型的EEG信号 上进行了预训练,并在多种下游任务上进行了验证,包括异常检测、事件类型分类、情感识别和步态预测。实验结果表明,LaBraM在各自领域的表现超过了所有比较的SOTA(State of the Art)方法。


Introduction

  • 背景:当前的EEG模型缺乏跨任务的学习能力,泛化性较差。
  • 动机:大语言模型(LLMs)的成功表明自监督掩码预训练的方式对于大规模数据应用的潜力,将重建思想应用于预训练神经Transformer可能对下游任务是有效的。
  • 挑战
    1. 缺乏足够的EEG数据:如何利用大量的未标记EEG数据集?以及多大的数据够用?
    2. 不同的EEG数据集有不同的采集配置:如何处理不同格式的EEG数据以匹配神经Transformer的输入层?
    3. 缺乏有效的EEG表征学习范式:EEG的低信噪比特点,以及如何平衡时间和空间特征?
  • 贡献
    1. 大规模EEG预训练:在超过2500小时的EEG数据上预训练
    2. 兼容各种EEG配置:LaBraM 是统一的模型,能够在灵活的辅助下处理各种通道和时间长度的 EEG 信号。预训练的 LaBraM 可以适应任何具有不同配置的下游数据集
    3. 有效的EEG表征学习:神经 Transformer 使该模型能够有效捕获具有不同通道和长度的脑电图信号的时间和空间特征,使其适用于脑电图分析中的各种下游任务。并进一步定义了一个神经密码本(CodeBook),它提供了一种紧凑、通用且有意义的EEG信号表示。
    4. 下游数据集综合实验:作者在 BCI 的四个代表性下游任务上评估了 LaBraM,结果表明在很大程度上超越了所有为特定任务而开发的 SOTA 方法。

Method

在这里插入图片描述

Neural tokenizer training:

在通过掩码预测对 LaBraM 进行预训练之前,需要先将 EEG 标记为离散tokens。这一部分主要基于 Van Den Oord 的 VQVAE 架构实现

  • EEG数据token化:首先通过一个 tokenizer 模块将EEG根据时间和通道两个维度划分为patch矩阵
  • tokens 的向量量化:基于VQVAE的思想,将上一步得到的patch通过最近邻的方式找到一个预定义的 CodeBook 上的向量来代替这个patch,更新patch矩阵
  • 傅里叶谱预测:重建的目标被设定为EEG信号的傅里叶频谱的频率和相位分布(作者在预实验中发现直接重建EEG信号损失无法收敛,可能是SNR过低导致),作者认为这两种特征揭示了大脑潜在的神经生理活动(存在改进空间,这里的重建目标决定了后续预训练的下游任务的上限)。
  • VQ的预测损失:包含两种预测目标的重建损失,以及 CodeBook 的更新损失
    在这里插入图片描述

Pre-training LaBraM:

  • 模型架构:时序 encoder → 叠加时序和空间 embedding → 大量Transformer模块 → Tokens预测头
  • 掩码输入:同样地划分为patch矩阵,然后随机选取一定比例的patch进行掩蔽,同时为了提高训练效率和内存使用,将随机掩码的对称patch矩阵同时作为输入,也可以起到数据增广的作用。
  • 预测目标:上一步得到的离散tokens。
    在这里插入图片描述

Results

Experimental setup:

  • Pre-training:在超过2500h的EEG数据上训练神经tokenizer和预训练 LaBram
  • Fine-tuning:在四个下游数据集上进行全微调 LaBram

Pre-training result:

在这里插入图片描述

Comparison with SOTA:

表 1 和表 2 展示了最先进的baseline以及LaBraM在 TUAB 和 TUEV 的结果。结果表明,LaBraM-Base 模型在这两项任务的各种评估指标上均优于所有baseline。随着模型参数数量的增加,LaBraM-Huge 模型表现最好。作者认为有了足够的数据量,大规模脑电图模型可以学习更通用的脑电图模式,从而提高脑电图分析中各种下游任务的性能。
在这里插入图片描述

Pre-training with/without downstream datasets:

在这里插入图片描述

如图 4 所示,是否将下游任务数据集纳入模型的预训练过程不会显着影响模型在下游任务上的性能。这表明 LaBraM 模型具有学习通用脑电图表示的能力

Scaling data size:

在这里插入图片描述

如图所示,随着数据规模的不断扩大,Huge模型的性能呈现出明显的上升趋势。这些结果基本遵循 scaling law,所以作者大胆推断,在数据量至少为一万小时的情况下,Huge 模型将继续表现得更好。


Conclusion

LaBraM是一个通过无监督预训练学习通用embedding的大型脑电图(EEG)模型,能够处理多样化的EEG数据集。LaBraM通过分割EEG信号和使用向量量化神经谱预测来生成丰富的语义tokenizer,并利用神经Transformer架构在大规模数据上预训练学习EEG信号的时空间特征,适用于多种EEG分析任务。在异常检测、事件分类、情感识别和步态预测等任务中,LaBraM的表现超越了当前最先进方法,有望推动EEG深度学习模型的发展。


Related work

  • BCI 中的自监督学习BrainBERT(Wang 等人,2023)掩蔽立体脑电图 (SEEG) 频谱图的随机部分,并使用 43.6 小时的数据生成原始嵌入。

Appendix

Effectiveness of VQ:

在这里插入图片描述

LaBraM without pre-training:

直接在下游数据集上从头开始训练 LaBraM,无需预训练,性能急剧下降证明了预训练的有用性。
在这里插入图片描述


Discussion

  • Limitations
    1. 虽然作者收集了有史以来最大的超过2500小时的脑电图数据集,并为BCI训练了有史以来最大的3.69亿参数的模型,但与当今的大型视觉模型和大型语言模型相比,仍然有很大的差距。
    2. LaBraM 需要进行全面微调以适应下游任务,这可能会耗费计算成本和内存成本。
    3. LaBraM 使用单峰脑电图数据进行训练。研究用其他方式训练大型脑电图模型是值得的。
  • Outlook
    1. 涌现能力:从各种BCI任务中收集更多的脑电数据,并训练更大的脑电模型,看看脑电模型中是否存在类似于大型语言模型的涌现能力
    2. 高效性:利用适配器、即时调优、LoRA等参数高效学习方法,减少微调开销,节省磁盘空间
    3. 多模态:将图像、语言、语音和其他生理信号等其他模态纳入大型脑电图模型训练中以构建新的范式,或将脑电图表示与语义空间中的其他模态对齐,这可能是未来工作的一个有意义且具有挑战性的方向。

创作不易,麻烦点点赞和关注咯!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2245126.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

瀚海微SD NAND之SD 协议(34)1.8V信号的时序

固定数据窗口输出时序(SDR12、SDR25、SDR50) 固定数据窗口插卡输出时序如下图所示,SDR12、SDR25、SDR50的输出时序 有效窗口由输出延迟(topy)的最小值和最大值指定。 无论温度和电压如何变化,与SDCLK同步的有效数据窗口都是可用的。 输出有效窗口由t…

web——sqliabs靶场——第十三关——报错注入+布尔盲注

发现是单引号加括号闭合的 尝试联合注入 发现不太行,那尝试报错注入。 测试报错注入 unameadmin) and updatexml(1,0x7e,3) -- &passwdadmin&submitSubmit 爆数据库 unameadmin) and updatexml(1,concat(0x7e,database(),0x7e),3) -- &passwdadmin&a…

5、AI测试辅助-生成测试用例思维导图

AI测试辅助-生成测试用例思维导图 创建测试用例两种方式1、Plantuml思维导图版本 (不推荐)2、Markdown思维导图版本(推荐) 创建测试用例两种方式 完整的测试用例通常需要包含以下的元素: 1、测试模块 2、测试标题 3、前置条件 4、…

附录2-pytorch yolov5目标检测

项目地址 https://github.com/ultralytics/yolov5 参考 https://zhuanlan.zhihu.com/p/711356735 目录 1 数据集准备 1.1 images 1.2 labels 1.3 yaml文件 2 环境配置 3 python环境配置 3.1 安装torch 3.2 安装opencv 3.3 安装 ultralytics 4 预训练模型…

CDM(码分复用)发送和接受原理

现在假设主机A、B、C。其对应的码片序列为a、b、c。 现在有: 现在假设A发送比特1,对应发送的是。B不发送。C发送比特0,对应发送。 信号叠加的结果为。 基站X将结果与每一个主机的码片序列做内积。 与A: ,因此A发送了1。 与B…

菜鸟驿站二维码/一维码 取件识别功能

特别注意需要引入 库文 ZXing 可跳转: 记录【WinForm】C#学习使用ZXing.Net生成条码过程_c# zxing-CSDN博客 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using static System.Net.…

华为云鸿蒙应用入门级开发者认证考试题库(理论题和实验题)

注意:考试链接地址:华为云鸿蒙应用入门级学习认证_华为云鸿蒙应用入门级开发者认证_华为云开发者学堂-华为云 当前认证打折之后是1元,之后原价700元,大家尽快考试!考试题库里面答案不一定全对,但是可以保证…

Spring Boot与MyBatis-Plus的高效集成

Spring Boot与MyBatis-Plus的高效集成 引言 在现代 Java 开发中,MyBatis-Plus 作为 MyBatis 的增强工具,以其简化 CRUD 操作和无需编写 XML 映射文件的特点,受到了开发者的青睐。本篇文章将带你一步步整合 Spring Boot 与 MyBatis-Plus&…

Elasticsearch:如何部署文本嵌入模型并将其用于语义搜索

你可以按照这些说明在 Elasticsearch 中部署文本嵌入模型,测试模型并将其添加到推理提取管道。它使你能够生成文本的向量表示并对生成的向量执行向量相似性搜索。示例中使用的模型在 HuggingFace上公开可用。 该示例使用来自 MS MARCO Passage Ranking Task 的公共…

uniapp 购物弹窗组件 (微信小程序)

效果图&#xff0c;暂时只适应单规格&#xff0c;居中弹出和下方弹出&#xff0c;如需求不满足&#xff0c;请自行修改代码 &#xff08;更新于24/11/15) 居中显示效果 下方弹出效果 html <template><view class"" v-if"show":class"mod…

(Linux)搭建静态网站——基于http/https协议的静态网站

简单了解nginx配置文件 1.下载并开启nginx服务 下载 [rootlocalhost ~]# dnf install nginx -y开启 [rootlocalhost ~]# systemctl restart nginx 1.(1)搭建静态网站——基于http协议的静态网站 实验1&#xff1a;搭建一个web服务器&#xff0c;访问该服务器时显示“hello w…

爬取网易云音乐热歌榜:从入门到实战

爬取网易云音乐热歌榜&#xff1a;从入门到实战 前提声明 爬虫应遵守目标网站的robots.txt协议&#xff0c;尊重版权和用户隐私。本代码仅供学习和研究使用&#xff0c;不得用于商业用途。请确保在合法合规的前提下使用本代码。本代码所爬音乐为公开可选择的音乐 目录 引言…

Quality minus junk论文阅读

Quality minus junk论文阅读 文章目录 Quality minus junk论文阅读 AbstractTheoretical FrameworkEmpirical AnalysisDataQuality scorePortfoliosEx ante quality forecasts fundamentals Results and DiscussionThe price of qualityUnderstanding the price of quality: th…

利用RAGflow和LM Studio建立食品法规问答系统

前言 食品企业在管理标准、法规&#xff0c;特别是食品原料、特殊食品法规时&#xff0c;难以通过速查法规得到准确的结果。随着AI技术的发展&#xff0c;互联网上出现很多AI知识库的解决方案。 经过一轮测试&#xff0c;找到问题抓手、打通业务底层逻辑、对齐行业颗粒度、沉…

类和对象——拷贝构造函数,赋值运算符重载(C++)

1.拷⻉构造函数 如果⼀个构造函数的第⼀个参数是自身类类型的引用&#xff0c;且任何额外的参数都有默认值&#xff0c;则此构造函数也叫做拷贝构造函数&#xff0c;也就是说拷贝构造是⼀个特殊的构造函数。 // 拷贝构造函数//d2(d1) Date(const Date& d) {_year d._yea…

浅谈软件开发中的yield关键字:从餐厅服务理解异步编程之美

在现代软件开发中&#xff0c;处理大量数据流时经常会遇到性能和内存消耗的问题。传统的编程方式往往是一次性获取所有数据&#xff0c;这就像餐厅厨师要把所有菜品做完才上菜一样&#xff0c;既不高效也不够灵活。而yield关键字的出现&#xff0c;为我们提供了一种优雅的解决方…

散户持股增厚工具:智能T0算法交易

最近市场很多都说牛市&#xff0c;但是大多数朋友怎么来的又怎么吐出去了。这会儿我们用T0的智能算法交易又可以增厚我们的持仓收益。简单来说&#xff0c;就是基于用户原有的股票持仓&#xff0c;针对同一标的&#xff0c;配合智能T0算法&#xff0c;每天全自动操作&#xff0…

[ 网络安全介绍 1 ] 什么是网络安全?

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 _PowerShell &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 &#x1f389;点赞➕评论➕收藏 养成习…

R语言4.3.0安装教程【附安装包】

R for Windows是一个免费的用于统计计算和统计制图的优秀工具&#xff0c;是R语言开发工具。它拥有数据存储和处理系统、数组运算工具&#xff08;其向量、矩阵运算方面功能尤其强大&#xff09;、完整连贯的统计分析工具、优秀的统计制图等功能。提供的图形界面&#xff0c;可…

【网络】Socket编程TCP/UDP序列化和反序列化理解应用层(C++实现)Json::Value

主页&#xff1a;醋溜马桶圈-CSDN博客 专栏&#xff1a;计算机网络原理_醋溜马桶圈的博客-CSDN博客 gitee&#xff1a;mnxcc (mnxcc) - Gitee.com 目录 1.基于Socket的UDP和TCP编程介绍 1.1 基本TCP客户—服务器程序设计基本框架 ​编辑1.2 基本UDP客户—服务器程序设计基本框…