【大模型】LLaMA: Open and Efficient Foundation Language Models

news2024/11/23 6:09:33

链接:https://arxiv.org/pdf/2302.13971
论文:LLaMA: Open and Efficient Foundation Language Models

Introduction

  1. 规模和效果
    7B to 65B,LLaMA-13B 超过 GPT-3 (175B)
  2. Motivation
    如何最好地缩放特定训练计算预算的数据集和模型大小,并不是模型参数越大越好,给定一个目标级别的性能,首选模型不是训练最快的而是推理最快的

Approach

  1. 预训练数据
    表中数据的混合:
    在这里插入图片描述
  • CommonCrawl数据:对数据进行重复数据删除,使用 fastText 线性分类器执行语言识别以删除非英语页面并使用 ngram 语言模型过滤低质量的内容。
  • C4:发现使用不同的预处理 CommonCrawl 数据集可以提高性能。对于质量使用启发式方法,比如标点符号和单词句子数量
  • Github:根据字母数字字符的线长或比例过滤低质量的文件,并删除带有正则表达式的样板,例如标题;在文件级别对结果数据集进行重复数据删除
  • Wikipedia:20种语言,删除超链接、评论和其他格式样板。
  • Gutenberg and Books3:两个书籍数据,书籍级别执行重复数据删除,删除内容重叠超过 90% 的书籍。
  • ArXiv:科学数据,在第一部分和书目之前删除了所有内容,删除了评论、tex 文件、以及用户编写的内联扩展定义和宏,以增加论文之间的一致性。
  • Stack Exchange:涵盖各种领域的高质量问题和答案网站,范围从计算机科学到化学,从 28 个最大的网站保留数据,从文本中删除 HTML 标签并按分数对答案进行排序
  • Tokenizer:BPE,将所有数字拆分为单个数字,并回退到字节以分解未知的 UTF-8 字符。共计1.4T tokens。
  • 训练集使用:除了 Wikipedia 和 Books 域之外,每个token在训练期间仅使用一次,执行大约两个 epoch。
  1. 结构
  • Pre-normalization(GPT-3):提高训练稳定性(后归一化是针对输出,前归一化是在每个sub-layer的输入),RMSNorm「对于 Post-LN 方式,Layer Norm 放置在 Self-Attn sub layer 和 FFN sub layer 的 output 上,实证发现会导致 output 上的梯度过大,训练时不稳定,loss 不能稳定下降;Pre-LN 方式下,梯度值则比较稳定」
    在这里插入图片描述

  • SwiGLU activation function(PaLM)
    原始的 Transformer 中 FFN layer 使用 ReLU 激活函数,如下:
    在这里插入图片描述
    对 FFN 的实现方式进行改进,可以提升 Transformer 在语言模型上的表现,主要思路是借鉴 Gated Linear Units (GLU) 的做法,并将 GLU 中的 sigmoid 激活函数更换为 Swish 激活函数。原始 GLU 的形式:
    在这里插入图片描述
    将其中的 sigmoid 激活函数σ更改为Swishβ​ 激活函数 (f(x)=x⋅sigmoid(β⋅x)),则有:
    在这里插入图片描述
    FFN 可使用 SwiGLU 替换为 (此处省略了 Bias 项):
    在这里插入图片描述

  • Rotary Embeddings [GPTNeo]:rotary positional embeddings (RoPE)
    Rope和相对位置编码相比油更好的外推性(外推性是指大模型在训练时和预测时的输入长度不一致,导致模型的泛化能力下降的问题)
    对于 token 序列中的每个词嵌入向量,首先计算其对应的 query 和 key 向量,然后对每个 token 位置都计算对应的旋转位置编码,接着对每个 token 位置的 query 和 key 向量的元素按照 两两一组 应用旋转变换,最后再计算 query 和 key 之间的内积得到 self-attention 的计算结果。
    在这里插入图片描述

  1. 优化器
    AdamW,β1 = 0.9, β2 = 0.95,cosine learning rate schedule,weight decay of 0.1 and gradient clipping of 1.0
  2. 高效实现
  • 使用因果多头注意力的有效实现来减少内存使用和运行时间,xformers library;不存储注意力权重,也不加算被mask的key/query的分数【Causal Multi-Head Attention:由于是解码器,为了保持 Left-to-Right 自回归特点而 Mask 掉的那些位置,不计算 Attention weights.】
  • 减少了在后向传递期间重新计算的激活量
  • 使用模型和序列并行性来减少模型的内存使用
  • 重叠网络上的激活和 GPU 之间的通信(由于 all_reduce 操作)
  • 训练 65B 模型,2048个80GB A100 ,380 个token/s/GPU。 1.4T token的数据集训练 21 天

Results

包括zero-shot 和 few-shot 任务,20个benchmark

  1. Common Sense Reasoning
    在这里插入图片描述
  2. 闭卷问答
    在这里插入图片描述
    在这里插入图片描述
    模型推理可以在单个v100运行
  3. 阅读理解
    在这里插入图片描述
  4. 数学推理
    Minerva 是一系列 PaLM 模型,在从 ArXiv 和 Math Web Page 中提取的 38.5B 标记上进行微调,而 PaLM 或 LLAMA 都没有在数学数据上进行微调
    在这里插入图片描述
    maj1@k 表示我们为每个问题生成 k 个样本并执行多数投票的评估
  5. 代码生成
    在这里插入图片描述
  6. 大规模多任务语言理解

在这里插入图片描述
预训练数据中使用了有限数量的书籍和学术论文

  1. 训练期间性能的演变
    在这里插入图片描述
    在这里插入图片描述

指令微调

非常少量的微调提高了 MLU 的性能,进一步提高了模型遵循指令的能力
在这里插入图片描述

偏见、有毒性和错误信息

大型语言模型已被证明可以重现和放大训练数据中存在的偏差

  1. RealToxicityPrompts基准
    RealToxicityPrompts 由模型必须完成的大约 100k 个提示组成;然后通过向 PerspectiveAPI 3 请求自动评估毒性分数(分数越高,有毒越多)
    在这里插入图片描述

  2. CrowS-Pairs
    该数据集允许测量 9 个类别中的偏见:性别、宗教、种族/颜色、性取向、年龄、国籍、残疾、身体外观和社会经济地位
    在这里插入图片描述
    分数越高Bias越大

  3. WinoGender(性别偏见)

在这里插入图片描述
4. TruthfulQA
该基准可以评估模型生成错误信息或虚假声明的风险
在这里插入图片描述
与 GPT-3 相比,LLaMA在这两个类别中得分都更高,但正确答案的比率仍然很低

总结

贡献点一:“以少胜多”

  • LLaMA-13B outperforms GPT-3-175B on most benchmarks, despite being 10× smaller;
  • LLaMA-65B is competitive with PaLM-540B;
    贡献点二:open-sourcing
  • 训练数据全都 publicly available;
  • 参数公开;

Toread:Chinchilla and PaLM

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2244525.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

流程图图解@RequestBody @RequestPart @RequestParam @ModelAttribute

RequestBody 只能用一次,因为只有一个请求体 #mermaid-svg-8WZfkzl0GPvOiNj3 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-8WZfkzl0GPvOiNj3 .error-icon{fill:#552222;}#mermaid-svg-8WZfkzl0GPvOiNj…

论文阅读--supervised learning with quantum enhanced feature spaces

简略摘要 量子算法实现计算加速的核心要素是通过可控纠缠和干涉利用指数级大的量子态空间。本文在超导处理器上提出并实验实现了两种量子算法。这两种方法的一个关键组成部分是使用量子态空间作为特征空间。只有在量子计算机上才能有效访问的量子增强特征空间的使用为量子优势提…

django+boostrap实现注册

一、django介绍 Django 是一个高级的 Python 网络框架,可以快速开发安全和可维护的网站。由经验丰富的开发者构建,Django 负责处理网站开发中麻烦的部分,因此你可以专注于编写应用程序,而无需重新开发。 它是免费和开源的&#x…

【面试题】接口怎么测试?如何定位前后端的Bug?

接口怎么测试? 接口测试用来验证不同软件组件之间的交互是否正常。包括验证数据传输,参数传递,我在多个项目中有过测试接口的经验。(… 当进行接口测试时,会使用Postman和Python的Requests库。首先根据接口文档设计测…

151页PDF | XX集团数字化转型SAP项目规划方案(限免下载)

一、前言 这份报告是XX集团数字化转型SAP项目规划方案,该报告涵盖了集团战略解读、管理痛点分析、信息化建设目标、整体架构方案、实施策略、SAP系统价值和预期收益,旨在通过数字化推动集团运营模式变革,实现降本增效和价值创新。 《XX集团…

iOS逆向入门:使用theos注入第三方依赖库

背景 theos是一个跨平台的软件开发框架,常用于管理,开发和部署iOS项目,同时也是开发iOS越狱插件的主要工具。和MonkeyDev不同的是,它不依赖于xcode,可以在多个操作系统上运行。一个完整的iOS越狱开发流程包括&#xf…

LLM文档对话 —— pdf解析关键问题

一、为什么需要进行pdf解析? 最近在探索ChatPDF和ChatDoc等方案的思路,也就是用LLM实现文档助手。在此记录一些难题和解决方案,首先讲解主要思想,其次以问题回答的形式展开。 二、为什么需要对pdf进行解析? 当利用L…

HarmonyOS Next 浅谈 发布-订阅模式

HarmonyOS Next 浅谈 发布-订阅模式 前言 其实在目前的鸿蒙应用开发中,或者大前端时代、vue、react、小程序等等框架、语言开发中,普通的使用者越来越少的会碰到必须要掌握设计模式的场景。大白话意思就是一些框架封装太好了,使用者只管在它…

【HCIP]——OSPF综合实验

题目 实验需求 根据上图可得,实验需求为: 1.R5作为ISP:其上只能配置IP地址;R4作为企业边界路由器,出口公网地址需要通过PPP协议获取,并进行CHAP认证。(PS:因PPP协议尚未学习&#…

利用大语言模型对基准数据集在预处理和微调过程的数据污染检测

概述 虽然大规模语言模型发展迅速,但对其进行评估却变得越来越困难。人们在短时间内建立了许多基准来评估大规模语言模型的性能,但这些分数并不一定反映真实世界的性能。此外,还有人指出,这些基准数据集可能受到预处理和微调过程…

【SKFramework框架】一、框架介绍

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享QQ群:398291828小红书小破站 大家好,我是佛系工程师☆恬静的小魔龙☆,不定时更新Unity开发技巧,觉得有用记得一键三连哦。 一、前言 【Unity3D框架】SKFramework框架完全教程《全…

Linux中定时操作

一、一次性定时 这里以23&#xff1a;00为例 输入相关时间----at 23&#xff1a;00 所保存在哪个文件里------ ls /root > at.txt <EOT> &#xff08;ctrld退出到root&#xff09; 查看计划任务 ------ at -l 最后删除任务----at -d 2 二、周期性定时&#xf…

自回归和Rectified Flow完美融合统一多模态理解和生成!DeepSeek北大等开源JanusFlow

论文链接&#xff1a;https://arxiv.org/pdf/2411.07975 github链接&#xff1a;https://github.com/deepseek-ai/Janus 亮点直击 统一多模态框架&#xff1a; 提出 JanusFlow&#xff0c;一个同时处理图像理解和文本到图像生成任务的统一模型&#xff0c;解决了任务分离带来的…

Docker1:认识docker、在Linux中安装docker

欢迎来到“雪碧聊技术”CSDN博客&#xff01; 在这里&#xff0c;您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者&#xff0c;还是具有一定经验的开发者&#xff0c;相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导&#xff0c;我将…

数据结构在二叉树Oj中利用子问题思路来解决问题

二叉树Oj题 获取二叉树的节点数获取二叉树的终端节点个数获取k层节点的个数获取二叉树的高度检测为value的元素是否存在判断两颗树是否相同判断是否是另一棵的子树反转二叉树判断一颗二叉树是否是平衡二叉树时间复杂度O(n*n)复杂度O(N) 二叉树的遍历判断是否是对称的二叉树二叉…

【C++】踏上C++学习之旅(九):深入“类和对象“世界,掌握编程的黄金法则(四)(包含四大默认成员函数的练习以及const对象)

文章目录 前言1. 实现Date类的构造函数2. 实现Date类的拷贝构造函数3. 实现Date类的赋值运算符重载4. 实现各Date对象之间的比较接口5. 实现Date对象的加减接口6. const成员7. 取地址及const取地址操作符重载 前言 在我们前面学习到了"类和对象"的四大默认成员函数(…

远程控制软件使用教程

随着数字化办公浪潮的席卷&#xff0c;远程控制软件已经悄无声息地融入我们的日常生活&#xff0c;成为提升工作效率的神奇工具。它让我们无论身处何地&#xff0c;都能轻松驾驭办公室电脑&#xff0c;让旅途中的工作也变得轻松自如。那么&#xff0c;远程控制软件究竟是什么&a…

oracle查看锁阻塞-谁阻塞了谁

一 模拟锁阻塞 #阻塞1 一个会话正在往一个大表写入大量数据的时候&#xff0c;另一个会话加字段&#xff1a; #会话1 #会话2 会话2被阻塞了。 #阻塞2 模拟一个会话update一条记录&#xff0c;没提交。 另一个会话也update这一条记录&#xff1a; 会话2被阻塞了。 二 简单查…

我用豆包MarsCode IDE 做了一个 CSS 权重小组件

作者&#xff1a;夕水 查看效果 作为一个前端开发者&#xff0c;应该基本都会用VSCode来做开发&#xff0c;所以也应该见过如下这张图的效果: 以上悬浮面板分为2个部分展示内容。 <element class"hljs-attr">: 代表元素只有一个类名叫hljs-attr的类选择器&am…

第三届航空航天与控制工程国际学术会议 (ICoACE 2024)

重要信息 会议官网&#xff1a;www.icoace.com 线下召开&#xff1a;2024年11月29日-12月1日 会议地点&#xff1a;陕西西安理工大学金花校区 &#xff08;西安市金花南路5号&#xff09; 大会简介 2024年第三届航空航天与控制工程国际学术会议&#xff08;ICoACE 2024&a…