【金融风控项目-07】:业务规则挖掘案例

news2025/1/16 17:26:18

文章目录

  • 1.规则挖掘简介
  • 2 规则挖掘案例
    • 2.1 案例背景
    • 2.2 规则挖掘流程
    • 2.3 特征衍生
    • 2.4 训练决策树模型
    • 2.5 利用结果划分分组

1.规则挖掘简介

  • 两种常见的风险规避手段:
    • AI模型
    • 规则
  • 如何使用规则进行风控
    • **使用一系列逻辑判断(以往从职人员的经验)**对客户群体进行区分, 不同群体逾期风险有显著差别
    • 比如:多头借贷是否超过一定的数量,设定一个值,如果超过这个值则拒绝借贷
    • 采用一条规则就可以将用户进行分组,可以将用户划分到高风险组,在高风险组中的用户则直接进行拒绝;如果不在高风险组就进入到下一条规则的判断
  • 规则和AI模型的优点:
    • 规则:可以快速使用,便于业务人员理解,但是判断相对简单粗暴,单一维度不满条件直接拒绝
    • AI模型:开发周期长,对比使用规则更复杂,但是更加灵活,用于对于风控精度要求更高的场景。
  • 可以通过AI模型辅助建立规则引擎,决策树很适合规则挖掘的场景。

2 规则挖掘案例

2.1 案例背景

某互联网公司拥有多个业务板块,每个板块下都有专门的贷款产品。

  • 外卖平台业务的骑手可以向平台申请“骑手贷”

  • 电商平台业务的商户可以申请“网商贷”

  • 网约车业务的司机可以向平台申请“司机贷”

公司有多个类似的场景,共用相同的规则引擎及申请评分卡,贷款人都是该公司的兼职人员
近期发现,“司机贷”的逾期率较高

  1. 整个金融板块30天逾期率为1.5%
  2. 司机贷”产品的30天逾期达到了5%

期望解决方案:

  • 现有的风控架构趋于稳定
  • 希望快速开发快速上线,解决问题
    • 尽量不使用复杂的方法
    • 考虑使用现有数据挖掘出合适的业务规则

数据:
在这里插入图片描述

  • 常用的数据分为两类:数值型数据和类别型数据
  • 原始数据中有些数据需要进行处理,有些数据不需要进行处理

2.2 规则挖掘流程

加载数据

import pandas as pd
import numpy as np
data = pd.read_excel('../data/rule_data.xlsx')
data.head()

在这里插入图片描述

data.shape

在这里插入图片描述

# 查看有多少类别
data.class_new.unique()

在这里插入图片描述

data.info()

在这里插入图片描述

  • create_dt - 有很多缺失值,需要进行处理

2.3 特征衍生

原始数据的特征太少,考虑在原始特征基础上衍生出一些新的特征来,将特征分成三类分别处理

  • 数值类型变量:按照id分组后,采用多种方式聚合,衍生新特征
    • 最终得到每个特征按照id分组聚合之后的df
  • 分类类型变量,按照id分组后,聚合查询条目数量,衍生新特征
  • 其它:日期时间类型,是否违约(标签),用户评级等不做特征衍生处理
# 原始数据中有19个特征
# org_list - 不用于进行特征衍生的列
# agg_list - 数值类型的特征,需要进行分组聚合
# count_list - 类别型特征,需要进行分组计数
org_list = ['uid','create_dt','oil_actv_dt','class_new','bad_ind']
agg_list = ['oil_amount','discount_amount','sale_amount','amount','pay_amount','coupon_amount','payment_coupon_amount']
count_list = ['channel_code','oil_code','scene','source_app','call_source']
  • 对原始数据进行copy,防止操作出错,需要重新加载数据
df = data[org_list].copy()
df[agg_list] = data[agg_list].copy()
df[count_list] = data[count_list].copy()
# 查看数据是不是又缺失值
df.isna().sum()

在这里插入图片描述

  • 缺失值填充
# 按照uid和create_dt进行降序排序
df.sort_values(['uid','create_dt'],ascending = False)
  • 对creat_dt做补全,用oil_actv_dt来填补
# 传入两个值
ef time_isna(x,y):
    if str(x) == 'NaT':
        x = y
    return x
df2 = df.sort_values(['uid','create_dt'],ascending = False)
# apply返回一个由自定函数返回值组成的series
# axis = 1 将df2的行送入到series中 ,df传入的虽然是行,但是结构仍然是series
df2['create_dt'] = df2.apply(lambda x: time_isna(x.create_dt,x.oil_actv_dt),axis = 1)
# df2.apply(lambda x: time_isna(x.create_dt,x.oil_actv_dt),axis = 1)

在这里插入图片描述

  • 截取申请时间和放款时间不超过6个月的数据(考虑数据时效性)
# 两个时间相减得到的是timedelta类型的数据
# 需要通过x.days获取到具体的不带days的数据
df2['dtn'] = (df2.oil_actv_dt - df2.create_dt).apply(lambda x :x.days)
df = df2[df2['dtn']<180]
df.head()

在这里插入图片描述

  • 将用户按照id编号排序,并保留最近一次申请时间,确保每个用户有一条记录(每个样本送入到模型中都是一条数据)
base = df[org_list] # 不进行特征衍生的数据
base['dtn'] = df['dtn']
base = base.sort_values(['uid','create_dt'],ascending = False)
base = base.drop_duplicates(['uid'],keep = 'first')
base.shape 

在这里插入图片描述
在这里插入图片描述

  • 特征值衍生
    • 对连续统计型变量进行函数聚合
    • 方法包括对历史特征值计数、求历史特征值大于0的个数、求和、求均值、求最大/小值、求最小值、求方差、求极差等
gn = pd.DataFrame() # 创建一个空的dataframe
for i in agg_list: # 遍历需要进行特征衍生的特征
	# 按照uid进行分组,groupby()应用apply函数传入的是每个组的df
	# 获取长度
    tp = df.groupby('uid').apply(lambda df:len(df[i])).reset_index()
    tp.columns = ['uid',i + '_cnt']
    if gn.empty:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    #求历史特征值大于0的个数
    tp = df.groupby('uid').apply(lambda df:np.where(df[i]>0,1,0).sum()).reset_index()
    tp.columns = ['uid',i + '_num']
    if gn.empty:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    #求和
    tp = df.groupby('uid').apply(lambda df:np.nansum(df[i])).reset_index()
    tp.columns = ['uid',i + '_tot']
    if gn.empty:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    #求平均值
    tp = df.groupby('uid').apply(lambda df:np.nanmean(df[i])).reset_index()
    tp.columns = ['uid',i + '_avg']
    if gn.empty:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    #求最大值
    tp = df.groupby('uid').apply(lambda df:np.nanmax(df[i])).reset_index()
    tp.columns = ['uid',i + '_max']
    if gn.empty:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    #求最小值
    tp = df.groupby('uid').apply(lambda df:np.nanmin(df[i])).reset_index()
    tp.columns = ['uid',i + '_min']
    if gn.empty:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    #求方差
    tp = df.groupby('uid').apply(lambda df:np.nanvar(df[i])).reset_index()
    tp.columns = ['uid',i + '_var']
    if gn.empty:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')
    #求极差
    tp = df.groupby('uid').apply(lambda df:np.nanmax(df[i]) -np.nanmin(df[i]) ).reset_index()
    tp.columns = ['uid',i + '_ran']
    if gn.empty:
        gn = tp
    else:
        gn = pd.merge(gn,tp,on = 'uid',how = 'left')

  • 查看衍生结果
gn.columns

在这里插入图片描述

  • 对dstc_lst变量求distinct个数
    • 对类别型的变量,按照uid进行分组之后,去重之后进行计数
gc = pd.DataFrame()
for i in count_list:
    tp = df.groupby('uid').apply(lambda df: len(set(df[i]))).reset_index()
    tp.columns = ['uid',i + '_dstc']
    if gc.empty:
        gc = tp
    else:
        gc = pd.merge(gc,tp,on = 'uid',how = 'left')
  • 将三个部分的df进行拼接
fn = pd.merge(base,gn,on= 'uid')
fn = pd.merge(fn,gc,on= 'uid') 
fn.shape
  • merge过程中可能会出现缺失情况,填充缺失值
fn = fn.fillna(0)
fn.head(100)

2.4 训练决策树模型

  • 选择数据,训练模型
x = fn.drop(['uid','oil_actv_dt','create_dt','bad_ind','class_new'],axis = 1)
y = fn.bad_ind.copy()
from sklearn import tree
dtree = tree.DecisionTreeRegressor(max_depth = 2,min_samples_leaf = 500,min_samples_split = 5000)
dtree = dtree.fit(x,y)
  • 输出决策树图像
import pydotplus 
from IPython.display import Image
from six import StringIO
# import os
# os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
# with open("dt.dot", "w") as f:
#     tree.export_graphviz(dtree, out_file=f)
dot_data = StringIO() # 开辟内存空间
# dtree - 指定模型
# out_file - 指定空间
# feature_name - 指定特征矩阵x的列名 x.columns
# class_name - 指定y标签列的列名
tree.export_graphviz(dtree, out_file=dot_data,
                         feature_names=x.columns,
                         class_names=['bad_ind'],
                         filled=True, rounded=True,
                         special_characters=True)

dot_data.getvalue()
graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) 

在这里插入图片描述
在这里插入图片描述

2.5 利用结果划分分组

group_1 = fn.loc[(fn.amount_tot>48077.5)&(fn.amount_cnt>3.5)].copy()
group_1['level'] = 'past_A'
group_2 = fn.loc[(fn.amount_tot>48077.5)&(fn.amount_cnt<=3.5)].copy()
group_2['level'] = 'past_B'
group_3 = fn.loc[fn.amount_tot<=48077.5].copy()
group_3['level'] = 'past_C'
  • 如果拒绝past_C类客户,则可以使整体负样本占比下降至0.021
  • 如果将past_B也拒绝掉,则可以使整体负样本占比下降至0.012
  • 至于实际对past_A、past_B、past_C采取何种策略,要根据利率来做线性规划,从而实现风险定价

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2243964.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第8章硬件维护-8.2 可维护性和可靠性验收

8.2 可维护性和可靠性验收 可维护性和可靠性验收非常重要&#xff0c;硬件维护工程师在后端发现问题后&#xff0c;总结成可维护性和可靠性需求&#xff0c;在产品立项的时候与新特性一起进行需求分析&#xff0c;然后经过设计、开发和测试环节&#xff0c;在产品中落地。这些需…

在k8s上部署minio

一、 环境 已部署k8s&#xff0c;支持helm部署 二、添加Minio Helm Chart仓库 helm repo add bitnami https://charts.bitnami.com/bitnami -n your_namespace helm repo update -n your_namespace部署带tls的minio helm install minio-s3 bitnami/minio -n your_namespace…

gtest 框架

基本了解 google提供的一个C测试框架&#xff0c;主要就是简化测试单元的书写&#xff0c;具有高效、灵活可拓展的特点 主要特点 简单易用&#xff1a;gtest 提供了清晰且易于使用的 API&#xff0c;便于开发者快速编写单元测试。丰富的断言支持&#xff1a;gtest 提供了多种断…

机器学习—误差分析

帮助运行诊断的最重要的方法是选择下一步要尝试的内容&#xff0c;提高你的学习算法性能&#xff0c;偏差和方差可能是最重要的想法&#xff0c;然后是错误分析。 假设Mcv500&#xff0c;即有500个交叉验证示例&#xff0c;你的算法错误的分类了100个&#xff0c;错误分析过程…

微知-如何查看BlueField DPU上的内存信息,包括内存主频和位宽?(dmidecode -t memory)

背景 在定位DPU上网卡性能的时候&#xff0c;可能涉及到查看内存的主频、位宽、电压等信息&#xff0c;如何快速查看&#xff1f; 命令 dmidecode -t memory实操 可以看到主频是 3200MT/s&#xff0c;另外还能看到位宽&#xff0c;大小&#xff0c;电压等信息。

【AI系统】AI系统架构的组成

AI 系统组成 如图所示&#xff0c;大致可以将 AI 系统分为以下几个具体的方向&#xff1a; AI 训练与推理框架 AI 框架不仅仅是指如 PyTorch 等训练框架&#xff0c;还包括推理框架。其负责提供用户前端的 AI 编程语言&#xff0c;接口和工具链。负责静态程序分析与计算图构建…

竞赛思享会 | 2024年第十届数维杯国际数学建模挑战赛D题【代码+演示】

Hello&#xff0c;这里是Easy数模&#xff01;以下idea仅供参考&#xff0c;无偿分享&#xff01; 题目背景 本题旨在通过对中国特定城市的房产、人口、经济、服务设施等数据进行分析&#xff0c;评估其在应对人口老龄化、负增长趋势和极端气候事件中的韧性与可持续发展能力。…

机器学习基础07

目录 1.逻辑回归 1.1原理 1.2API 2.K-Means 2.1算法过程 2.2API 3.SVM&#xff08;支持向量机&#xff09; 3.1算法原理​ 3.2API 1.逻辑回归 逻辑回归(Logistic Regression)是机器学习中的一种分类模型&#xff0c;逻辑回归是一种分类算法。 1.1原理 逻辑回归的输…

基于python的在线投票系统小程序u9t2g.

目录 项目介绍开发技术具体实现截图微信开发者工具介绍技术路线开发语言以及框架介绍python-flask核心代码部分展示python-django核心代码部分展示详细视频演示源码获取 项目介绍 投票系统用户端是基于微信小程序&#xff0c;管理员端是基于web网页端&#xff0c; &#xff0c…

android 使用MediaPlayer实现音乐播放--权限请求

在Android应用中&#xff0c;获取本地音乐文件的权限是实现音乐扫描功能的关键步骤之一。随着Android版本的不断更新&#xff0c;从Android 6.0&#xff08;API级别23&#xff09;开始&#xff0c;应用需要动态请求权限&#xff0c;而到了android 13以上需要的权限又做了进一步…

向量数据库FAISS之五:原理(LSH、PQ、HNSW、IVF)

1.Locality Sensitive Hashing (LSH) 使用 Shingling MinHashing 进行查找 左侧是字典&#xff0c;右侧是 LSH。目的是把足够相似的索引放在同一个桶内。 LSH 有很多的版本&#xff0c;很灵活&#xff0c;这里先介绍第一个版本&#xff0c;也是原始版本 Shingling one-hot …

【SQL】E-R模型(实体-联系模型)

目录 一、介绍 1、实体集 定义和性质 属性 E-R图表示 2. 联系集 定义和性质 属性 E-R图表示 一、介绍 实体-联系数据模型&#xff08;E-R数据模型&#xff09;被开发来方便数据库的设计&#xff0c;它是通过允许定义代表数据库全局逻辑结构的企业模式&#xf…

SIMCom芯讯通A7680C在线升级:FTP升级成功;http升级腾讯云对象储存的文件失败;http升级私有服务器的文件成功

从事嵌入式单片机的工作算是符合我个人兴趣爱好的,当面对一个新的芯片我即想把芯片尽快搞懂完成项目赚钱,也想着能够把自己遇到的坑和注意事项记录下来,即方便自己后面查阅也可以分享给大家,这是一种冲动,但是这个或许并不是原厂希望的,尽管这样有可能会牺牲一些时间也有哪天原…

如何理解岭回归模型?(python)

1 何为岭回归&#xff1f; 岭参数k不是唯一确定的&#xff0c;其估计的回归系数是一个估计族。 2 何为岭迹分析&#xff1f; 1&#xff09;定义 2&#xff09;作用 k值的选取原则&#xff1a; 如下图所示&#xff0c;当kk0时&#xff0c;各回归系数的估计值基本都能相对稳…

Prometheus结合K8s(二)使用

上一篇介绍了如何搭建 Prometheus结合K8s&#xff08;一&#xff09;搭建-CSDN博客&#xff0c;这章介绍使用 页面访问 kubectl get svc -n prom 看promeheus和granfana的端口访问页面 Prometheus 点击status—target&#xff0c;可以看到metrics的数据来源&#xff0c;即各…

泷羽sec学习打卡-云技术基础2-捕获照片

声明 学习视频来自B站UP主 泷羽sec,如涉及侵权马上删除文章 笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负 关于云技术基础的那些事儿-捕获帅照 搭建网站的前提有哪些&#xff1f;搭建网站的流程有哪些&#xff1f…

常见的水位检测传感器及其特点

常见的水位检测传感器及其特点&#xff1a; 1. 浮球液位传感器&#xff1a; - 工作原理&#xff1a;利用浮力&#xff0c;使浮子上升&#xff0c;通过判断浮子上升来判断水位 -优点&#xff1a;便宜简单 - 缺点&#xff1a;精确度低&#xff0c;应用环境受限。靠液体的浮力…

Flink Lookup Join(维表 Join)

Lookup Join 定义&#xff08;支持 Batch\Streaming&#xff09; Lookup Join 其实就是维表 Join&#xff0c;比如拿离线数仓来说&#xff0c;常常会有用户画像&#xff0c;设备画像等数据&#xff0c;而对应到实时数仓场景中&#xff0c;这种实时获取外部缓存的 Join 就叫做维…

Azure Kubernetes Service (AKS)资源优化策略

针对Azure Kubernetes Service (AKS)的资源优化策略&#xff0c;可以从多个维度进行考虑和实施&#xff0c;以提升集群的性能、效率和资源利用率。以下是一些关键的优化策略&#xff1a; 一、 Pod资源请求和限制 设置Pod请求和限制&#xff1a;在YAML清单中为所有Pod设置CPU和…

RabbitMQ1:初识MQ

欢迎来到“雪碧聊技术”CSDN博客&#xff01; 在这里&#xff0c;您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者&#xff0c;还是具有一定经验的开发者&#xff0c;相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导&#xff0c;我将…