torchvision库在进行图片转换操作中报antialias参数没有显式设置会导致不同图片后端中的值不统一的警告信息

news2024/11/19 22:19:49

诸神缄默不语-个人CSDN博文目录

这个警告信息是我在直接调用已经封装好的视觉模型时出现的,位置是:
D:\anaconda3\envs\venv_path\Lib\site-packages\torchvision\transforms\functional.py:1603

警告信息全文是:
UserWarning: The default value of the antialias parameter of all the resizing transforms (Resize(), RandomResizedCrop(), etc.) will change from None to True in v0.17, in order to be consistent across the PIL and Tensor backends. To suppress this warning, directly pass antialias=True (recommended, future default), antialias=None (current default, which means False for Tensors and True for PIL), or antialias=False (only works on Tensors - PIL will still use antialiasing). This also applies if you are using the inference transforms from the models weights: update the call to weights.transforms(antialias=True).

这个警告信息是因为在即将发布的v0.17版本中,torchvision库计划更改所有调整大小变换(如Resize()RandomResizedCrop()等)的antialias参数的默认值。在当前版本中,antialias参数的默认值为None,这意味着对于张量(Tensor)后端,它将被解释为False,而对于PIL(Python Imaging Library)后端,它将被解释为True。为了在未来的版本中保持一致性,torchvision计划将默认值更改为True

即使我没有直接在我的代码中使用antialias参数,只要我使用了torchvision库中的调整大小变换,这个警告信息也会出现,因为这些变换函数内部使用了antialias参数。

要消除这个警告,有几个选项:

  1. 推荐的方法:直接在你的变换函数调用中传递antialias=True。这是推荐的做法,因为它符合未来的默认行为。
transform = torchvision.transforms.Resize(size=(256, 256), antialias=True)
  1. 保持当前行为:如果你想保持当前的行为(即对于张量使用False,对于PIL使用True),你可以传递antialias=None
transform = torchvision.transforms.Resize(size=(256, 256), antialias=None)
  1. 禁用抗锯齿:如果你确定你想在张量后端禁用抗锯齿,你可以传递antialias=False。但请注意,这不会影响PIL后端,它仍然会使用抗锯齿。
transform = torchvision.transforms.Resize(size=(256, 256), antialias=False)

选择哪种方法取决于你的具体需求和你希望如何处理未来的默认值更改。如果你想确保代码在未来版本的torchvision中继续正常工作,推荐使用第一种方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2243653.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

自己动手写Qt Creator插件

文章目录 前言一、环境准备1.先看自己的Qt Creator IDE的版本2.下载源码 二、使用步骤1.参考原本的插件2.编写自定义插件1.cmakelist增加一个模块2.同理,qbs文件也增加一个3.插件源码 三、效果总结 前言 就目前而言,Qt Creator这个IDE,插件比…

【星海随笔】ZooKeeper-Mesos

开源的由 Twitter 与 伯克利分校的 Mesos 项目组共同研发设计。 两极调度架构 支持高可用集群,通过ZooKeeper进行选举。 Mesos master 管理着所有的 Mesos slave 守护进程 每个slave运行具体的任务或者服务。 Franework 包括的调度器和执行机两部分 执行器运行在Me…

集群聊天服务器(12)nginx负载均衡器

目录 负载均衡器nginx负载均衡器优势 如何解决集群聊天服务器跨服务器通信问题?nginx的TCP负载均衡配置nginx配置 负载均衡器 目前最多只能支持2w台客户机进行同时聊天 所以要引入集群,多服务器。 但是客户连哪一台服务器呢?客户并不知道哪一…

集群聊天服务器(3)muduo网络库

目录 基于muduo的客户端服务器编程 muduo只能装在linux中,依赖boost库 客户端并不需要高并发 基于muduo的客户端服务器编程 支持epoll线程池,muduo封装了线程池 而且还有完善的日志系统 使用muduo库代码非常固定,基本就只有chatserver的类名…

深入内核讲明白Android Binder【一】

深入内核讲明白Android Binder【一】 前言一、Android Binder应用编写概述二、基于C语言编写Android Binder跨进程通信Demo0. Demo简介1. 服务的管理者server_manager.c2. Binder服务端代码实现 test_service.c2.1 实现思路2.2 完整实现代码 3. Binder客户端代码实现 test_clie…

NIST 发布后量子密码学转型战略草案

美国国家标准与技术研究所 (NIST) 发布了其初步战略草案,即内部报告 (IR) 8547,标题为“向后量子密码标准过渡”。 该草案概述了 NIST 从当前易受量子计算攻击的加密算法迁移到抗量子替代算法的战略。该草案于 2024 年 11 月 12 日发布,开放…

探索大规模语言模型(LLM)在心理健康护理领域中的应用与潜力

概述 心理健康是公共卫生最重要的领域之一。根据美国国家精神卫生研究所(NIMH)的数据,到 2021 年,22.8% 的美国成年人将患上某种形式的精神疾病。在全球范围内,精神疾病占非致命性疾病负担的 30%,并被世界…

排序(C语言实现)

排序 文章目录 排序插入排序直接插入排序折半查找插入排序希尔排序 选择排序简单选择排序堆排序一、构建堆**堆有以下性质**:**堆的存储方式**:**设计堆**数据结构堆的维护堆的初始化创建堆插入一个元素删除一个元素返回有效元素的个数获得优先级最高的元…

i春秋-EXEC(命令执行、nc传输文件、带外通道传输数据)

练习平台地址 竞赛中心 题目描述 题目内容 小猫旁边有一个no sign F12检查页面 没有提示 检查源代码 发现使用了vim编辑器 进而联想到vim编辑器的临时交换文件.xxx.swp 访问.index.php.swp&#xff0c;成功下载文件 使用vim -r 查看文件内容 vim -r index.php.swp <?p…

移情别恋c++ ദ്ദി˶ー̀֊ー́ ) ——14.哈希(2)(模拟实现)

1.概念介绍 1.1开散列 开散列&#xff08;Open Hashing&#xff09;&#xff0c;也叫链地址法&#xff0c;是一种解决哈希冲突的方法。每个哈希表槽位保存一个链表&#xff0c;所有散列到同一位置的元素都存储在该链表中。当插入元素发生冲突时&#xff0c;将新元素添加到相应…

使用Web Speech API实现语音识别与合成技术

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 使用Web Speech API实现语音识别与合成技术 使用Web Speech API实现语音识别与合成技术 使用Web Speech API实现语音识别与合成技…

自动驾驶系列—面向自动驾驶的模型迭代:工具、平台与最佳实践

&#x1f31f;&#x1f31f; 欢迎来到我的技术小筑&#xff0c;一个专为技术探索者打造的交流空间。在这里&#xff0c;我们不仅分享代码的智慧&#xff0c;还探讨技术的深度与广度。无论您是资深开发者还是技术新手&#xff0c;这里都有一片属于您的天空。让我们在知识的海洋中…

【Golang】——Gin 框架中的模板渲染详解

Gin 框架支持动态网页开发&#xff0c;能够通过模板渲染结合数据生成动态页面。在这篇文章中&#xff0c;我们将一步步学习如何在 Gin 框架中配置模板、渲染动态数据&#xff0c;并结合静态资源文件创建一个功能完整的动态网站。 文章目录 1. 什么是模板渲染&#xff1f;1.1 概…

网络基础 - NAT 篇

一、全局 IP 地址(公网 IP 地址)和私有 IP 地址 RFC 1918 规定了用于组建局域网的私有 IP 地址&#xff1a; 10.0.0.0 ~ 10.255.255.255172.16.0.0 ~ 172.31.255.255192.168.0.0 ~ 192.168.255.255 包含在以上范围内的 IP 地址都属于私有 IP 地址&#xff0c;而在此之外的 I…

ClickHouse的介绍、安装、数据类型

1、介绍和安装 1.1、简介 ClickHouse是俄罗斯的Yandex于2016年开源的列式存储数据库&#xff08;DBMS&#xff09;&#xff0c;使用C语言编写&#xff0c;主要用于在线分析处理查询&#xff08;OLAP&#xff09;&#xff0c;能够使用SQL查询实时生成分析数据报告。 OLAP&…

基于AOA算术优化的KNN数据聚类算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于AOA算术优化的KNN数据聚类算法matlab仿真。通过AOA优化算法&#xff0c;搜索最优的几个特征数据&#xff0c;进行KNN聚类&#xff0c;同时对比不同个数特征下…

tcp 超时计时器

在 TCP&#xff08;传输控制协议&#xff09;中有以下四种重要的计时器&#xff1a; 重传计时器&#xff08;Retransmission Timer&#xff09; 作用&#xff1a;用于处理数据包丢失的情况。当发送方发送一个数据段后&#xff0c;就会启动重传计时器。如果在计时器超时之前没有…

《Probing the 3D Awareness of Visual Foundation Models》论文解析——多视图一致性

一、论文简介 论文讨论了大规模预训练产生的视觉基础模型在处理任意图像时的强大能力&#xff0c;这些模型不仅能够完成训练任务&#xff0c;其中间表示还对其他视觉任务&#xff08;如检测和分割&#xff09;有用。研究者们提出了一个问题&#xff1a;这些模型是否能够表示物体…

【论文阅读】WaDec: Decompiling WebAssembly Using Large Language Model

论文阅读笔记:WaDec: Decompiling WebAssembly Using Large Language Model 1. 来源出处 论文标题: WaDec: Decompiling WebAssembly Using Large Language Model作者: Xinyu She, Yanjie Zhao, Haoyu Wang会议: 39th IEEE/ACM International Conference on Automated Softwar…

【数字孪生】从Abaqus到Unity有限元应力云图

从abaqus到unity&#xff1a; 目录 1. 数据准备 1.1 abaqus中提取element rpt文件 element rpt文件格式&#xff1a; 1.2 abaqus中提取node rpt文件&#xff1a; node rpt文件格式&#xff1a; 2. python预处理以上数据&#xff1a; 2.1 提取node rpt中的节点坐标及应力…