利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换

news2024/11/19 7:01:56

这段代码主要涉及图像处理任务,利用 OpenCVMatplotlib 库进行图像读取、颜色空间转换、掩膜创建、颜色替换等操作。下面是对代码的逐部分解释和归类:

1. 导入库

import cv2
import matplotlib.pyplot as plt
import numpy as np
  • cv2: OpenCV库,用于图像处理。
  • matplotlib.pyplot: 用于绘制和显示图像。
  • numpy: 用于处理数组,尤其是在图像数据处理中的数值操作。

2. 读取和转换图像颜色空间

image = cv2.imread('E:/insulator/1/1/picture/lion/4.png')
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
  • cv2.imread(): 读取图像。
  • cv2.cvtColor(): 将图像从 BGR 颜色空间转换为 HSV 颜色空间(色调、饱和度、明度),这有助于根据颜色值进行更准确的处理。

3. 创建颜色掩膜

lower_color = np.array([127, 29, 29])    # 红色低范围
upper_color = np.array([255, 255, 246])   # 红色高范围
mask = cv2.inRange(image, lower_color, upper_color)
  • 使用 cv2.inRange() 创建一个掩膜,只保留在 lower_colorupper_color 范围内的颜色(即红色范围)。

4. 应用掩膜并更改颜色

new_color = np.array([156, 163, 175], dtype=np.uint8)
background = np.array([255, 255, 255], dtype=np.uint8)
colored_image = np.zeros_like(image)
colored_image[mask > 0] = new_color
colored_image[mask == 0] = background
  • 创建一个新的空白图像 colored_image,然后根据掩膜将红色区域替换为 new_color,背景区域设置为白色。

5. 保存结果

cv2.imwrite('E:/insulator/1/1/picture/lion/colored_image.png', colored_image)
  • 使用 cv2.imwrite() 将处理后的图像保存为 colored_image.png

6. 操作与图像分析

white_mask = cv2.inRange(image1, (204, 40, 52), (229, 5, 8))
image1[white_mask] = (0, 150, 105)
  • 创建白色区域的掩膜,将掩膜区域的颜色更改为指定的绿色 (0, 150, 105)

7. 处理图像中的像素值

image1[image1 < 255] = 25
image1[image1 > 11] = (255, 0, 0)
  • 通过条件操作修改像素值:对于像素值小于 255 的区域,将其设为 25;对于像素值大于 11 的区域,将其设为蓝色 (255, 0, 0)

8. 平均化图像(通道降维)

image2 = image2.mean(axis=2)
  • 将图像 image2 的通道降维,转为灰度图(通过取平均值)。

9. 根据像素值进行条件替换

image1[np.logical_and(image3 > 222, image2 > 0)] = (0, 255, 0)
  • 使用 np.logical_and() 结合多个条件判断,修改符合条件的像素的颜色。

10. 更多条件操作与图像显示

image1[np.logical_and(image3 > 222, image2 > 0)] = (0, 255, 0)
image[np.logical_and(image1 > 46, image1 < 88)] = (255, 0, 0)
  • 根据多个条件修改图像的像素值,修改符合条件的像素为指定颜色。

11. 噪声添加与二值化

noise = np.random.rand(*image.shape)
thres = 0.3
image[noise > thres] = 255
image[image < 240] = 0
image[image >= 240] = 1
  • 使用随机噪声 np.random.rand() 修改图像的像素值,并根据阈值将图像转为二值图像(0 或 1)。

12. 根据掩膜对新图像进行处理

jueyuanzi_mask = cv2.imread("./jueyuanzi_mask.png")
new_image[np.logical_and(jueyuanzi_mask != 255, image != 1)] = (185, 28, 28)
chuanshuxian_mask = cv2.imread("./chuanshuxian_mask.png")
new_image[np.logical_and(chuanshuxian_mask != 255, image != 1)] = (255, 255, 255)
  • 读取掩膜图像(jueyuanzi_maskchuanshuxian_mask),根据掩膜的条件修改图像 new_image 的颜色。

13. 保存最终图像

new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
cv2.imwrite("new_image.png", new_image)
  • 将最终图像 new_image 转换为 BGR 颜色空间并保存为 new_image.png

总结

这段代码涉及图像处理中的几个常见任务:

  • 颜色空间转换:将图像从 BGR 转换为 HSV。
  • 掩膜创建与颜色替换:通过颜色范围提取特定区域,并替换为新颜色。
  • 图像的条件修改:根据像素值或掩膜条件改变图像区域的颜色。
  • 噪声添加与图像二值化:模拟噪声并进行图像二值化处理。
  • 图像合成与保存:通过多个操作合成新的图像,并最终保存。

这些操作可用于目标检测、图像分割、区域标记等应用,尤其在图像处理中用于特定颜色的提取与修改。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2243233.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Uni-APP+Vue3+鸿蒙 开发菜鸟流程

参考文档 文档中心 运行和发行 | uni-app官网 AppGallery Connect DCloud开发者中心 环境要求 Vue3jdk 17 Java Downloads | Oracle 中国 【鸿蒙开发工具内置jdk17&#xff0c;本地不使用17会报jdk版本不一致问题】 开发工具 HBuilderDevEco Studio【目前只下载这一个就…

【Android、IOS、Flutter、鸿蒙、ReactNative 】屏幕适配

Android Java 屏幕适配 参考 今日头条适配依赖配置 添加设计屏幕尺寸 设置字体大小 通过切换不同屏幕尺寸查看字体大小 设置文本宽高 通过切换不同屏幕尺寸查看文本宽高 Android Compose 屏幕适配 <

从视频帧生成点云数据、使用PointNet++模型提取特征,并将特征保存下来的完整实现。

文件地址 https://github.com/yanx27/Pointnet_Pointnet2_pytorch?spm5176.28103460.0.0.21a95d27ollfze Pointnet_Pointnet2_pytorch\log\classification\pointnet2_ssg_wo_normals文件夹改名为Pointnet_Pointnet2_pytorch\log\classification\pointnet2_cls_ssg "E:…

Websocket如何分块处理数据量超大的消息体

若我们服务端一次性最大处理的字节数是1M,而客户端发来了2M的数据&#xff0c;此时服务端的数据就要被切割成两次传输解码。Http协议中有分块传输&#xff0c;而在Websocket也可以分块处理超大的消息体。在jsr356标准中使用javax.websocket.MessageHandler.Partial可以分块处理…

论文复现_How Machine Learning Is Solving the Binary Function Similarity Problem

1. 内容概述 前言&#xff1a;此代码库支持 USENIX Security 22 论文 《How Machine Learning Is Solving the Binary Function Similarity Problem》&#xff0c;作者包括 Andrea Marcelli 等人&#xff0c;提供了相关代码、数据集和技术细节。 关键内容&#xff1a;技术报告…

【视觉SLAM】2-三维空间刚体运动的数学表示

读书笔记&#xff1a;学习空间变换的三种数学表达形式。 文章目录 1. 旋转矩阵1.1 向量运算1.2 坐标系空间变换1.3 变换矩阵与齐次坐标 2. 旋转向量和欧拉角2.1 旋转向量2.2 欧拉角 3. 四元数 1. 旋转矩阵 1.1 向量运算 对于三维空间中的两个向量 a , b ∈ R 3 a,b \in \R^3 …

【WPF】Prism学习(六)

Prism Dependency Injection 1.依赖注入&#xff08;Dependency Injection&#xff09; 1.1. Prism与依赖注入的关系&#xff1a; Prism框架一直围绕依赖注入构建&#xff0c;这有助于构建可维护和可测试的应用程序&#xff0c;并减少或消除对静态和循环引用的依赖。 1.2. P…

多账号登录管理器(淘宝、京东、拼多多等)

目录 下载安装与运行 解决什么问题 功能说明 目前支持的平台 功能演示 登录后能保持多久 下载安装与运行 下载、安装与运行 语雀 解决什么问题 多个账号的快捷登录与切换 功能说明 支持多个电商平台支持多个账号的登录保持支持快捷切换支持导入导出支持批量删除支持…

UniAPP快速入门教程(一)

一、下载HBuilder 首先需要下载HBuilder开发工具&#xff0c;下载地址:https://www.dcloud.io/hbuilderx.htmlhttps://www.dcloud.io/hbuilder.html 选择Windows正式版.zip文件下载。下载解压后直接运行解压目录里的HBuilderX.exe就可以启动HBuilder。 UniApp的插件市场网址…

PyAEDT:Ansys Electronics Desktop API 简介

在本文中&#xff0c;我将向您介绍 PyAEDT&#xff0c;这是一个 Python 库&#xff0c;旨在增强您对 Ansys Electronics Desktop 或 AEDT 的体验。PyAEDT 通过直接与 AEDT API 交互来简化脚本编写&#xff0c;从而允许在 Ansys 的电磁、热和机械求解器套件之间无缝集成。通过利…

SpringBoot源码解析(四):解析应用参数args

SpringBoot源码系列文章 SpringBoot源码解析(一)&#xff1a;SpringApplication构造方法 SpringBoot源码解析(二)&#xff1a;引导上下文DefaultBootstrapContext SpringBoot源码解析(三)&#xff1a;启动开始阶段 SpringBoot源码解析(四)&#xff1a;解析应用参数args 目录…

【Linux】指令 + 重定向操作

Linux基本指令 一.Linux基本指令1.mv&#xff08;重要&#xff09;2.cat3.more和less&#xff08;重要&#xff09;4.head和tail5.date6.cal7.find&#xff08;重要&#xff09; 二.Linux相关知识点1. Linux系统中&#xff1a;一切皆文件2. 重定向操作1. 输出重定向2. 追加重定…

【精通 Readline 库】:优化 Shell 外壳程序的艺术

&#x1f4c3;博客主页&#xff1a; 小镇敲码人 &#x1f49a;代码仓库&#xff0c;欢迎访问 &#x1f680; 欢迎关注&#xff1a;&#x1f44d;点赞 &#x1f442;&#x1f3fd;留言 &#x1f60d;收藏 &#x1f30f; 任尔江湖满血骨&#xff0c;我自踏雪寻梅香。 万千浮云遮碧…

ESP-IDF VScode 项目构建/增加组件 新手友好!!!

项目构建 1.新建文件夹&#xff0c;同时在该文件夹内新建.c和.h文件 如图所示&#xff0c;在components中新建ADC_User.c、ADC_User.h、CMakeLists.txt文件。当然这里你也可以不在components文件夹内新建文件&#xff0c;下面会说没有在components文件夹内新建文件构建项目的方…

玩转N1盒子:速刷OpenWRT软路由系统并实现公网访问管理

文章目录 前言1. 制作刷机固件U盘1.1 制作刷机U盘需要准备以下软件&#xff1a;1.2 制作步骤 2. N1盒子降级与U盘启动2.1 N1盒子降级2.2 N1盒子U盘启动设置2.3 使用U盘刷入OpenWRT2.4 OpenWRT后台IP地址修改2.5 设置旁路由&无线上网 3. 安装cpolar内网穿透3.1 下载公钥3.2 …

机器学习4

九、线性回归 1、概念 假设存在多个点&#xff0c;需要使用一条线来保障尽量拟合这些点&#xff0c;寻找这条线就叫回归。 机器学习中一种有监督学习的算法,回归问题主要关注的是因变量(需要预测的值)和一个或多个数值型的自变量(预测变量)之间的关系。 2、损失函数 存…

【Java EE初阶---多线程(初阶)】初识计算机

乐观学习&#xff0c;乐观生活&#xff0c;才能不断前进啊&#xff01;&#xff01;&#xff01; 我的主页&#xff1a;optimistic_chen 我的专栏&#xff1a;c语言 &#xff0c;Java &#xff0c;Java数据结构 欢迎大家访问~ 创作不易&#xff0c;大佬们点赞鼓励下吧~ 文章目录…

网络安全之国际主流网络安全架构模型

目前&#xff0c;国际主流的网络安全架构模型主要有&#xff1a; ● 信息技术咨询公司Gartner的ASA&#xff08;Adaptive Security Architecture自适应安全架构&#xff09; ● 美国政府资助的非营利研究机构MITRE的ATT&CK&#xff08;Adversarial Tactics Techniques &…

生成式人工智能(AIGC)在软件开发设计模式课程教学中的应用

一、引言 软件设计模式作为软件工程领域的核心组成部分&#xff0c;对于提升软件系统的质量和可维护性至关重要。然而&#xff0c;传统的软件设计模式课程教学方法面临着诸多挑战&#xff0c;例如教师准备教学案例的过程繁琐&#xff0c;学生理解和应用具体案例难度较大&#…

丹摩征文活动|摩智算平台深度解析:Faster R-CNN模型的训练与测试实战

目录 文章前言Faster R-CNN的简介Faster RCNN的训练与测试提前准备1.1 mobaxterm&#xff08;远程连接服务器&#xff09;1.2 本文的源码下载 目标检测模型 Faster-Rcnn2.1云服务器平台 数据上传内置JupyterLab的使用本地连接使用DAMODEL实例获取实例的SSH访问信息通过SSH连接通…