机器学习(贝叶斯算法,决策树)

news2025/1/22 12:43:23

朴素贝叶斯分类

贝叶斯分类理论

假设现有两个数据集,分为两类

我们现在用p1(x,y)表示数据点(x,y)属于类别1(图中红色圆点表示的类别)的概率,用p2(x,y)表示数据点(x,y)属于类别2(图中蓝色三角形表示的类别)的概率,那么对于一个新数据点(x,y),可以用下面的规则来判断它的类别:

  • 如果p1(x,y)>p2(x,y),那么类别为1

  • 如果p1(x,y)<p2(x,y),那么类别为2

条件概率

条件概率是指在一定条件下事件发生的概率

P(A|B)即表示事件B发生的情况下,事件A发生的概率。

有图可知:在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。

𝑃(A|B)=𝑃(A∩B)/𝑃(B)

变换可得

𝑃(A∩B)=𝑃(A|B)𝑃(B) 或𝑃(A∩B)=𝑃(B|A)𝑃(A)

即:𝑃(𝐴|𝐵)=𝑃(B|A)𝑃(𝐴)/𝑃(𝐵)

这为条件概率公式。

全概率公式

假定样本空间S,是两个事件A与A'的和。

红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。

在这种情况下,事件B可以划分成两个部分。

事件B的概率即可表示为:𝑃(𝐵)=𝑃(𝐵∩𝐴)+𝑃(𝐵∩𝐴′)

由上可得:𝑃(𝐵∩𝐴)=𝑃(𝐵|𝐴)𝑃(𝐴)

所以:𝑃(𝐵)=𝑃(𝐵|𝐴)𝑃(𝐴)+𝑃(𝐵|𝐴′)𝑃(𝐴′)

这就是全概率公式。它的含义是,如果A和A'构成样本空间的一个划分,那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。

贝叶斯推断

对条件概率公式进行变形,可以得到如下形式:

我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。

P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。

P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

后验概率 = 先验概率x调整因子

朴素贝叶斯推断

贝叶斯和朴素贝叶斯的概念是不同的,区别就在于“朴素”二字,朴素贝叶斯对条件概率分布做了条件独立性的假设。

根据贝叶斯定理,后验概率 P(a|X) 可以表示为:

$P(a|X) = \frac{P(X|a)P(a)}{P(X)}$

  • P(X|a) 是给定类别 ( a ) 下观测到特征向量 $X=(x_1, x_2, ..., x_n) $的概率;

  • P(a) 是类别 a 的先验概率;

  • P(X) 是观测到特征向量 X 的边缘概率,通常作为归一化常数处理。

又因,朴素贝叶斯分类器的关键假设是特征之间的条件独立性, 因此,我们可以将联合概率 P(X|a) 分解为各个特征的概率乘积:

$P(X|a) = P(x_1, x_2, ..., x_n|a) = P(x_1|a)P(x_2|a)...P(x_n|a)$

将这个条件独立性假设应用于贝叶斯公式,我们得到:

$P(a|X) = \frac{P(x_1|a)P(x_2|a)...P(x_n|a)P(a)}{P(X)}$

这样,朴素贝叶斯分类器就可以通过计算每种可能类别的条件概率和先验概率,然后选择具有最高概率的类别作为预测结果。

纹理色泽鼔声类别
1清晰清绿清脆好瓜
2模糊乌黑浊响坏瓜
3模糊清绿浊响坏瓜
4清晰乌黑沉闷好瓜
5清晰清绿浊响好瓜
6模糊乌黑沉闷坏瓜
7清晰乌黑清脆好瓜
8模糊清绿沉闷好瓜
9清晰乌黑浊响坏瓜
10模糊清绿清脆好瓜
11清晰清绿沉闷
12模糊乌黑浊响

按例中第12个瓜来判断

首先计算样本中好瓜和坏瓜的概率(10个瓜中有6个好瓜,4个坏瓜)
P(好瓜)=0.6
P(坏瓜)=0.4
--------------
P(纹理清晰)=0.5
P(纹理模糊)=0.5
--------------
P(色泽清绿)=0.5
P(色泽乌黑)=0.5
--------------
P(声音清脆)=0.3
P(声音沉闷)=0.3
P(声音浊响)=0.4
-----------------
第12个瓜的特征是(纹理模糊,色泽乌黑,声音浊响)
则:
P(纹理模糊|好瓜)=1/3
P(纹理模糊|坏瓜)=3/4
P(色泽乌黑|好瓜)=1/3
P(色泽乌黑|坏瓜)=3/4
P(声音浊响|好瓜)=1/3
P(声音浊响|坏瓜)=3/4
---------------------
P(好瓜)=P(纹理模糊|好瓜)*P(色泽乌黑|好瓜)*P(声音浊响|好瓜)*P(好瓜)/p(纹理模糊,色泽乌黑,声音浊响)=((1/3)*(1/3)*(1/3)*0.6)/p(纹理模糊,色泽乌黑,声音浊响)
P(坏瓜)=P(纹理模糊|坏瓜)*P(色泽乌黑|坏瓜)*P(声音浊响|坏瓜)*P(坏瓜)/p(纹理模糊,色泽乌黑,声音浊响)=((3/4)*(3/4)*(3/4)*0.4)/p(纹理模糊,色泽乌黑,声音浊响)

P(好瓜) < P(坏瓜)
故第12个瓜推断为坏瓜

拉普拉斯平滑系数

些事件或特征可能从未出现过,这会导致它们的概率被估计为零。然而,在实际应用中,即使某个事件或特征没有出现在训练集中,也不能完全排除它在未来样本中出现的可能性。拉普拉斯平滑技术可以避免这种“零概率陷阱”

公式为:

一般α取值1,m的值为总特征数量

例如:

sklearn API

sklearn.naive_bayes.MultinomialNB()
estimator.fit(x_train, y_train)
y_predict = estimator.predict(x_test)

sklearn 示例

from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
# 加载数据
x,y = load_iris(return_X_y=True)
# 分割
x_train,x_test,y_train,y_test = train_test_split(x,y,train_size=0.8,random_state=42,stratify=y)
# 创建模型
bayes = MultinomialNB()
# 训练
bayes.fit(x_train,y_train)
# 评估
score = bayes.score(x_test,y_test)
print(score)
# 预测
y_predict=bayes.predict([[2,5,3,5]])
print(y_predict)

 

决策树-分类

概念

树结构,通过条件判断而进行分支选择的节点。

基于信息增益决策树的建立

信息增益决策树倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息,算法只能对描述属性为离散型属性的数据集构造决策树。

(1) 信息熵

信息熵描述的是不确定性。信息熵越大,不确定性越大。信息熵的值越小,则D的纯度越高。

假设样本集合D共有N类,第k类样本所占比例为Pk,则D的信息熵为

(2) 信息增益

信息增益是一个统计量,用来描述一个属性区分数据样本的能力。信息增益越大,那么决策树就会越简洁。这里信息增益的程度用信息熵的变化程度来衡量, 信息增益公式:

(3) 信息增益决策树建立步骤

第一步,计算根节点的信息熵

上表根据是否贷款把样本分成2类样本,"是"占4/6=2/3, "否"占2/6=1/3,

所以

第二步,计算属性的信息增益

计算各特征的信息增益

第三步, 划分属性

对比属性信息增益,选择最大的特征作为第一个节点,将剩下的特征及目标继续重复计算信息熵,得到最大的作为第二个,以此类推。

基于基尼指数决策树的建立

基尼指数(Gini Index)是决策树算法中用于评估数据集纯度的一种度量,基尼指数衡量的是数据集的不纯度,或者说分类的不确定性。在构建决策树时,基尼指数被用来决定如何对数据集进行最优划分,以减少不纯度。

基尼指数的计算

对于一个二分类问题,如果一个节点包含的样本属于正类的概率是 (p),则属于负类的概率是 (1-p)。那么,这个节点的基尼指数 (Gini(p)) 定义为:

$Gini(p) = 1 - p^2 - (1-p)^2 = 2p(1-p) $

对于多分类问题,如果一个节点包含的样本属于第 k 类的概率是 $p_k$,则节点的基尼指数定义为:

$ Gini(p) = 1 - \sum_{k=1}^{K} p_k^2 $

  • 当一个节点的所有样本都属于同一类别时,基尼指数为 0,表示纯度最高。

  • 当一个节点的样本均匀分布在所有类别时,基尼指数最大,表示纯度最低。

案例:

首先工资有两个取值,分别是0和1。当工资=1时,有3个样本。

因此:

同时,在这三个样本中,工作都是好。

故:

同理,当工资=0时,有5个样本,在这五个样本中,工作有3个是不好,2个是好。

两个式子相加得:

得到工资的基尼系数

同理可算出压力的基尼系数,平台的基尼系数

根据基尼指数最小准则, 我们优先选择工资或者平台=0作为D的第一特征。

再将剩下的特征再进行相同计算,再选择一个基尼系数最小的作为第二特征

sklearn API

示例

葡萄酒分类

用决策树对葡萄酒进行分类

from sklearn.datasets import load_wine
from sklearn.tree import DecisionTreeClassifier,export_graphviz
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

wine = load_wine()
x = wine.data
y = wine.target

# 分割,stratify可指定按谁分割。
x_train,x_test,y_train,y_test = train_test_split(x,y,train_size=0.8,random_state=42,stratify=y)
# 标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
# 模型,criterion='entropy'表示用信息熵来计算,criterion='gini'表示用基尼系数来计算,默认值用基尼系数
decter = DecisionTreeClassifier(criterion='entropy')
# 训练
decter.fit(x_train,y_train)
# 评估
score = decter.score(x_test,y_test)
print(score)
# 预测
y_predict = decter.predict([[1,2,3,4,5,5,7,8,9,6,4,8,9]])
print(y_predict)
# 可视化
export_graphviz(decter, out_file="./model/wine1.dot", feature_names=wine.feature_names)

下列是可视化文件:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2242808.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[ACTF2020]Upload 1--详细解析

信息收集 题目告诉我们是一道upload&#xff0c;也就是文件上传漏洞题目。 进入界面&#xff0c;是一个灯泡&#xff0c;将鼠标放在图标上就会出现文件上传的相应位置&#xff1a; 思路 文件上传漏洞&#xff0c;先看看有没有前端校验。 在js源码中找到了前端校验&#xff…

网络常用特殊地址-127.0.0.1

借用Medium博客的一张图 经常在问题解答群里留意到如下关于127.0.0.1的消息 ”如果单机版&#xff0c;不需要配置IP&#xff0c;所有配置IP的地方都写死127.0.0.1就可以” “ip: 根据实际情况填写&#xff08;在 xxx-init.conf 里可以给一个默认值 127.0.0.1 &#xff0c;方便…

Scala-字符串(拼接、printf格式化输出等)-用法详解

Scala 一、 使用 号连接字符串 在 Scala 中&#xff0c; 运算符实际上会调用 String 类的 concat 方法或者使用字符串的加法操作&#xff0c;生成一个新的字符串。 字符串是不可变的&#xff0c;每次拼接都会创建一个新的字符串。 Mr. yuTips&#xff1a; 性能相对较差&…

软考教材重点内容 信息安全工程师 第 4 章 网络安全体系与网络安全模型

4,1 网络安全体系的主要特征: (1)整体性。网络安全体系从全局、长远的角度实现安全保障&#xff0c;网络安全单元按照一定的规则&#xff0c;相互依赖、相互约束、相互作用而形成人机物一体化的网络安全保护方式。 (2)协同性。网络安全体系依赖于多种安全机制&#xff0c;通过各…

【数据库】如何保证数据库迁移过程中数据的一致性?

在数据库迁移过程中&#xff0c;保证数据的一致性是非常重要的&#xff0c;尤其是在涉及到多个表、多个数据库或分布式系统的情况下。以下是一些确保数据一致性的最佳实践和方法&#xff1a; 1. 备份数据 在开始迁移之前&#xff0c;进行全面的数据备份是确保数据一致性的第…

github 模型下载方法

github 模型权重&#xff0c;如果是项目下载&#xff0c;pth文件有时下载后只有1kb 本人测试ok下载方法&#xff1a; 点击view raw&#xff0c;然后可以下载模型权重文件了。

spring-data-elasticsearch 3.2.4 实现桶bucket排序去重,实现指定字段的聚合搜索

一、背景 es索引有一个文档CourseIndex&#xff0c;下面是示意: creatorIdgradesubjectnameno1002270英语听力课程一N00232DS91004380数学口算课程N00209DK71003480物理竞赛课程N00642XS21002280英语听力课程二N00432WS31002290英语听力课程三N002312DP5 在搜索的时候&#…

QQ 小程序已发布,但无法被搜索的解决方案

前言 我的 QQ 小程序在 2024 年 8 月就已经审核通过&#xff0c;上架后却一直无法被搜索到。打开后&#xff0c;再在 QQ 上下拉查看 “最近使用”&#xff0c;发现他出现一下又马上消失。 上线是按正常流程走的&#xff0c;开发、备案、审核&#xff0c;没有任何违规&#xf…

快速搭建Android开发环境:Docker部署docker-android并实现远程连接

目录 前言 1. 虚拟化环境检查 2. Android 模拟器部署 3. Ubuntu安装Cpolar 4. 配置公网地址 5. 远程访问 小结 6. 固定Cpolar公网地址 7. 固定地址访问 作者简介&#xff1a; 懒大王敲代码&#xff0c;计算机专业应届生 今天给大家聊聊快速搭建Android开发环境&#x…

大麦抢票科技

仅供学习参考&#xff0c;切勿再令您所爱的人耗费高昂的价格去购置黄牛票 ⚠️核心内容参考: 据悉&#xff0c;于购票环节&#xff0c;大麦凭借恶意流量清洗技术&#xff0c;于网络层实时甄别并阻拦凭借自动化手段发起下单请求的流量&#xff0c;强化对刷票脚本、刷票软件以及…

【STM32】基于SPI协议读写SD,详解!

文章目录 0 前言1 SD卡的种类和简介1.1 SD卡的种类1.2 SD卡的整体结构1.3 SD卡运行机制——指令和响应2 SD卡的通信总线2.1 SDIO2.2 SPI3 硬件连接4 代码实践【重点】4.1 HAL库移植4.2 标准库移植4.3 遇到的问题和解决方案5 扩展阅读0 前言 因为项目需要,使用stm32读写sd卡,这…

kafka管理工具

文章目录 前言一、Kafka Assistan1.1 描述1.2、配置安装 二、Conduktor2.1、描述2.2、配置安装 三、kafka-maneger3.1、描述3.2、配置安装3.3、命令启动3.4、[refer to](https://www.ctyun.cn/document/10000120/10033218#section-39755766f4910e4b) 前言 提示&#xff1a;这里…

leetcode_二叉树最大深度

对二叉树的理解 对递归调用的理解 对内存分配的理解 基础数据结构&#xff08;C版本&#xff09; - 飞书云文档 每次函数的调用 都会进行一次新的栈内存分配 所以lmax和rmax的值不会混在一起 /*** Definition for a binary tree node.* struct TreeNode {* int val;* …

使用 Axios 拦截器优化 HTTP 请求与响应的实践

目录 前言1. Axios 简介与拦截器概念1.1 Axios 的特点1.2 什么是拦截器 2. 请求拦截器的应用与实践2.1 请求拦截器的作用2.2 请求拦截器实现 3. 响应拦截器的应用与实践3.1 响应拦截器的作用3.2 响应拦截器实现 4. 综合实例&#xff1a;一个完整的 Axios 配置5. 使用拦截器的好…

高亚科技签约美妥维志化工,提升业务协同与项目运营效率

近日&#xff0c;中国企业管理软件资深服务商高亚科技与韶关美妥维志化工有限公司&#xff08;以下简称“美妥维志”&#xff09;正式签约。基于高亚科技的8Manage PM项目管理软件&#xff0c;美妥维志将实现项目进度、人员审批及问题的统一管理&#xff0c;提升部门间协同效率…

使用真实 Elasticsearch 进行更快的集成测试

作者&#xff1a;来自 Elastic Piotr Przybyl 了解如何使用各种数据初始化和性能改进技术加快 Elasticsearch 的自动化集成测试速度。 在本系列的第 1 部分中&#xff0c;我们探讨了如何编写集成测试&#xff0c;让我们能够在真实的 Elasticsearch 环境中测试软件&#xff0c;并…

数据分布之指数分布(sample database classicmodels _No.10)

数据分布之指数分布&#xff08;sample database classicmodels _No.10&#xff09; 准备工作&#xff0c;可以去下载 classicmodels 数据库具体如下 点击&#xff1a;classicmodels 也可以去 下面我的博客资源下载 https://download.csdn.net/download/tomxjc/88685970 文章…

RPC-健康检测机制

什么是健康检测&#xff1f; 在真实环境中服务提供方是以一个集群的方式提供服务&#xff0c;这对于服务调用方来说&#xff0c;就是一个接口会有多个服务提供方同时提供服务&#xff0c;调用方在每次发起请求的时候都可以拿到一个可用的连接。 健康检测&#xff0c;能帮助从连…

Flink_DataStreamAPI_执行环境

DataStreamAPI_执行环境 1创建执行环境1.1getExecutionEnvironment1.2createLocalEnvironment1.3createRemoteEnvironment 2执行模式&#xff08;Execution Mode&#xff09;3触发程序执行 Flink程序可以在各种上下文环境中运行&#xff1a;我们可以在本地JVM中执行程序&#x…

Cyberchef配合Wireshark提取并解析HTTP/TLS流量数据包中的文件

本文将介绍一种手动的轻量级的方式&#xff0c;还原HTTP/TLS协议中传输的文件&#xff0c;为流量数据包中的文件分析提供帮助。 如果捕获的数据包中存在非文本类文件&#xff0c;例如png,jpg等图片文件&#xff0c;或者word&#xff0c;Excel等office文件异或是其他类型的二进…