【STM32】基于SPI协议读写SD,详解!

news2025/1/22 13:13:00

文章目录

    • 0 前言
    • 1 SD卡的种类和简介
      • 1.1 SD卡的种类
      • 1.2 SD卡的整体结构
      • 1.3 SD卡运行机制——指令和响应
    • 2 SD卡的通信总线
      • 2.1 SDIO
      • 2.2 SPI
    • 3 硬件连接
    • 4 代码实践【重点】
      • 4.1 HAL库移植
      • 4.2 标准库移植
      • 4.3 遇到的问题和解决方案
    • 5 扩展阅读

0 前言

  因为项目需要,使用stm32读写sd卡,这一块网上的资料很多,但是比较杂乱。有些是不能跑,有些是代码可以跑,但是相关的注释或者配置方法、流程不够清晰明确,于是花了几天时间,研究了几个成功案例之后,总结出一个相对明确的流程。【基于STM32F103C8T6

网上有各种流传的例程,经过测试确实可以用,但是魔改得有点多,个人觉得不是很便于理解,所以想着能不能从最开始的FATFS包来自己手动移植一个,最好是这个流程完全可复制,操作也非常简单,就像一个插件一样,基本实现模块化。

1 SD卡的种类和简介

  既然要读写SD卡,那首先要对SD卡的底层有一定的了解,这样才能够真正理解后面的代码。

1.1 SD卡的种类

  首先需要明确的是,SD卡指的是那种大的卡,一般用在相机里面,如下图所示:

在这里插入图片描述在这里插入图片描述

而这种卡:

在这里插入图片描述在这里插入图片描述
一般叫microSD卡TF卡,二者其实相差不大,只是引脚略微不同,其实读写都是一样的,也可以考虑买一个TF卡转SD卡的卡套,来适应两种接口。

  相比于这个SD卡的名字,另一个SD卡的标准显得更加重要。所谓的标准,差别主要体现在容量上面,这个需要在使用前明确。目前仍然有很多老年手机不支持大容量的TF卡,其本质就是因为不支持更高的标准。常见的SD卡标准如下图所示。
在这里插入图片描述
这个标准SD卡和TF卡是一样的,只是名字不同。

参考链接

  另外,根据这个链接, 实际上SD的通信协议也有多个版本,最早支持的版本是1.x,在SDHC之后,基本都是使用2.0版本,来兼容FAT32格式(原来都是FAT和FAT16),这两个协议的区别在驱动方面主要体现在指令上(2.0版本的指令更多,且兼容1.x版本的指令),这个后面有相关介绍,先埋个伏笔。

1.2 SD卡的整体结构

  理解了SD卡的种类,再来看看结构,主要是以下这张图
在这里插入图片描述
简单来说,就是除了存储单元外,还有好几个寄存器用于存放卡相关的信息,这些信息可以通过一些特定的指令读写。

1.3 SD卡运行机制——指令和响应

  SD卡的核心就是存储,那外部的主机如何对这个进行读写呢?就是通过指令。主机发送一条指令,然后SD卡会发送响应,让主机知道指令执行情况。
  每一条指令都是6个字节(48bit),其结构如下所示:
在这里插入图片描述

其中,Command占6位,所以一共有64个指令,从0-63,依次叫CMD0,CMD1,。。。CMD63,但是因为一次性是发送一个字节,也就是8位,所以会加上前面的两位,即0x40+CMDx才是指令。
  紧接着的是32位指令执行的参数,一般是存储地址或者寄存器值等,不是所有指令都有参数,对于没有参数的指令,直接传0即可。
  最后是校验值,这里采用的是循环校验,计算有点复杂,这个其实在后续的代码中,都是把部分常用的指令对应的校验计算出来给他传过去,并没有现场计算。

  指令发出之后,主机要等待SD卡的响应,其响应有很多类型,长度也各自不一样。短的响应只有一个字节,长的响应可以有多个字节。大部分的指令都是R1类型,即只有一个字节,R2表示响应有两个字节,还有一种类型是R1b,即在R1的基础上,后面紧跟着busy信号,可能有多个字节,一般不怎么使用。R1响应的结构各个位都有单独的含义,如下图所示。
在这里插入图片描述
可以看到,第6-1位都是错误,为1表示错误(“有效”),为0表示没有错误;第0位表示卡是否处于空闲状态,一般是发送进入IDLE指令(CMD0)之后会响应,也就是0x01。

  以上就是SD卡使用的基本讨论,即写入一个6字节的指令,然后读取响应的1-2个字节,并判断指令执行状态。时序图如下所示。
在这里插入图片描述
  接下来就是重点:SD卡数据的读写。和上面一样,读写数据之前,需要先发送一个指令,然后再读入或写入数据。对应的指令主要是这几个:
在这里插入图片描述
分别有读单块、读多块、写单块、写多块四个指令。其中,读写多块貌似需要使用到ACMD指令,所以用得比较少,可以通过多次调用读写单块的函数达到读写多块的目的。【一般SD卡一块(block)是512 Byte】
  根据官方的手册,读数据的流程大概是这样:
在这里插入图片描述
即先发送读的指令,然后等待sd卡响应指令后(根据上图,读单块和多块的响应都是R1类型),再读取数据块。
类似地,写指令的操作流程时序如下所示。
在这里插入图片描述
和上面不一样的是,在数据写入完毕后,还会有一个响应(Data Response),表示数据写入的情况,由SD卡传输给主机,是一个字节,其格式如下所示

在这里插入图片描述

  但是,这个时序图中并没有对“Data Block”部分进行展开叙述,但其实其内部结构同样重要,这里根据官方的描述和可行代码自行绘制了这张图:
在这里插入图片描述
其中,First Byte类似于一个启动符号,告知后面有数据来了,然后是一个block的数据,一般是512字节,最后是两位校验码。
  对于读数据,首先要读第一个字节,判断是不是0xFE,如果是,表示后面是数据,要把后面的数据给收了,收完512字节之后,最后的两位校验码可以忽略;对于写数据,是在发完写指令之后,手动写入0xFE,作为写数据的第一个字节,然后再写入512字节数据,最后两位校验码一般直接传0xFF即可。

2 SD卡的通信总线

  上面介绍的是SD卡的运行机制,从上面的结构图可以看出,这个运行机制到MCU控制端还需要一个通信协议,来约定这些数据该如何传输。常见的SD卡通信协议主要有两种:SPI模式SD模式(SDIO),其中两种通信协议下的引脚定义如下图所示。
在这里插入图片描述

在SPI协议中,SD卡扮演的角色是Slave,即从机,故其中MOSI和MISO中“M”指的控制数据读写的芯片,如MCU等;“S”从机是指SD卡。

参考链接

关于引脚的理解:以SPI为例,MCU对SD卡的控制指令都是通过CMD引脚串行传输的,所以CMD引脚是MOSI;而SD卡返回的数据是通过D0传输,所以D0是MISO。而SDIO数据传输可以选定多个引脚,常见的有只使用D0,和使用D0~D3四个引脚,并行传输。

2.1 SDIO

  在STM32F10x系列型号中,只有大容量的芯片才支持这个协议,没有实践过,这里只放一个网上的教程:

  • SDIO—SD卡读写测试

值得一提的是,不同协议其实只是传输方式不一样,底层的那些逻辑是差不多的,当然有些指令SPI协议不支持,只支持SDIO协议。

2.2 SPI

  • 概述
      SPI是四线协议:SCK(同步时钟),MOSI(主机到从机的数据),MISO(从机到主机的数据),CS(片选)。和IIC类似,也是一个串行协议,因为有时钟信号,所以是一个同步传输的协议(UART是异步协议)。但是,值得一提的是,因为收发数据是两根线,所以SPI是全双工协议,而IIC因为只有SCK和SDA,所以是半双工协议。

  • 运行模式
      SPI比较特殊的地方在于,它的电平和采样边沿可以额外设置,也就是设置不同的传输模式,这个设置由两个变量来确定:CPOL(Clock Polarity)、CPHA(Clock Phase),这两个变量分别可以设置0或1,因此组合起来有四种模式:

    • 0 0 CLK空闲时为低电平,CLK上升沿(第一个边沿)采样数据。
    • 0 1 CLK空闲时为低电平,CLK下降沿(第二个边沿)采样数据。
    • 1 0 CLK空闲时为高电平,CLK下降沿(第一个边沿)采样数据。
    • 1 1 CLK空闲时为高电平,CLK上升沿(第二个边沿)采样数据。
  • 数据同步
      由于SPI是全双工协议,且时钟只能是主设备发出,所以在主设备看来,不管是发送还是接收数据,都必须提供时钟,加上数据发送和接收是分开的两根线,所以数据在发送时也需要接收,或者说,接收时因为需要时钟,所以其实接收缓冲区也会新增数据,只是用不用的问题。
      那问题来了,如果我要收一个数据,必须发一个数据,那对方因为该数据误操作了怎么办?所以在接收数据时,要发送一个对从机设备来说无效的数据,也就是所谓的dummy data,这样就不会误响应了。

  • 代码配置
      网上有很多流传的软件SPI,即在理解SPI协议的基础上,使用IO口实现这个时序,但是这样一方面是代码比较麻烦,另外就是时钟配置难以掌握,所以这种只适用于硬件SPI没有或者被用完的情况,在有硬件SPI外设的前提下,还是用硬件比较方便。
      这里以一个标准库下的SPI外设初始化为例理解一下SPI配置的方法:

    void SD_SPI_Init(void)
    {
         
        GPIO_InitTypeDef GPIO_InitStructure;
    	
    	//使能时钟——宏定义实现
        ENABLE_SD_SPI_GPIO_CLK();
        ENABLE_SD_SPI_CLK();
    	
    	//GPIO初始化
        GPIO_InitStructure.GPIO_Pin = SD_SPI_MOSI_PIN | SD_SPI_SCK_PIN;   //MOSI & SCK: AFIO,Output
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
        GPIO_Init(SD_SPI_GPIO_PORT, &GPIO_InitStructure);
    
        GPIO_InitStructure.GPIO_Pin = SD_SPI_MISO_PIN;                    //MISO: Input
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;  //输入
        GPIO_Init(SD_SPI_GPIO_PORT, &GPIO_InitStructure);
    
    	//SPI外设初始化
        SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;  //设置SPI单向或者双向的数据模式:SPI设置为双线双向全双工
        SPI_InitStructure.SPI_Mode = SPI_Mode_Master;		//设置SPI工作模式:设置为主SPI
        SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;		//设置SPI的数据大小:SPI发送接收8位帧结构
        SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;		//选择了串行时钟的稳态:时钟悬空高
        SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;	//数据捕获于第二个时钟沿
        SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;		//NSS信号由硬件(NSS管脚)还是软件(使用SSI位)管理:内部NSS信号有SSI位控制
        SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256;		//定义波特率预分频的值:波特率预分频值为256
        SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;	//指定数据传输从MSB位还是LSB位开始:数据传输从MSB位开始
        SPI_InitStructure.SPI_CRCPolynomial = 7;	//CRC值计算的多项式
        SPI_Init(SD_SPI, &SPI_InitStructure);  //根据SPI_InitStruct中指定的参数初始化外设SPIx寄存器
    
        SPI_Cmd(SD_SPI, ENABLE); //使能SPI外设
    
        SD_SPI_ReadWriteByte(0xff);//启动传输
    }
    

    重点是GPIO口输出和输入要分别配置。

3 硬件连接

  SD卡电路设计如下图所示,在画电路板时,记得在几个sd卡的引脚上加上上拉电阻:

在这里插入图片描述

CD引脚全称是Card Detect,用于检测卡是否插入,在一些开发板的原理图中有类似的做法,但是软件其实也可以判断出来,所以必要性不强

4 代码实践【重点】

  在使用SD卡时,建议在充分理解上述展示的SD卡运行原理后先实现存储的访问,比如先写入一段,然后再去读取,串口输出读取的内容,对比一下是否一致。然后再考虑加上FATFS,实现基本的读写文件功能。
  很显然,我其实并没有按照这个流程学习,而是先找了网上的一个可运行的代码(已经带了FATFS),然后在此基础上不断尝试新的操作,在这个尝试的过程中对SD卡运行原理有了比较深刻的认识。

  言归正传,如果以实用为主,建议直接使用HAL库,如果愿意折腾,可以自己尝试在标准库实现,建议在HAL库的基础上再去移植标准库。由于这两个步骤我都实践了一遍,后文都有介绍。

参考链接:

  • 国外的一个教程,基于CubeIDE实现
  • 从大容量移植到中等容量的成功案例

4.1 HAL库移植

  这部分内容基本参考自上面的教程,只做了一些小的修改,让这个部分集成度更高。

  • 首先先设置一些系统参数,不设置其实问题也不大,但是设置全面,不留风险是编程开发的一个好习惯:
    在这里插入图片描述

    在这里插入图片描述

  • 然后使能SPI外设

    在这里插入图片描述
    这里简单介绍一下NSS,所谓硬件NSS类似于串口的硬件流控一样,即通过实际的引脚来实现片选,这样就可以直接调用SPI的函数来进行控制,而所谓软件(即下面 NSS Signal Type: Software)即是额外再初始化一个引脚来控制。

    这里其实个人觉得两者是差不多的,只是硬件是芯片指定的引脚,而软件则可以随便指定,相对自由一些。代码上其实差别不大,只是一个调SPI库的函数,一个调GPIO库的函数。但是网上相关的代码基本都是使用软件形式,所以这里也跟风一下。

  • 然后再添加FATFS,这里只改动两个设置:

    • USE_LFN:Enable with static working buffer on the BSS
    • MAX_SS:4096

    如下图所示
    在这里插入图片描述

  • 项目配置那块,需要把堆栈加大

    在这里插入图片描述
    分文件显示,模块化更容易理解:
    在这里插入图片描述

    私以为将不同外设分为不同文件是一个很好的习惯

最后,生成代码即可,代码方面主要修改3个文件:

fat_sd_card.c【额外添加的一个文件】

#define TRUE  1
#define FALSE 0
#define bool BYTE

#include "fatfs_sd_card.h"

static volatile DSTATUS Stat = STA_NOINIT;  /* Disk Status */
static uint8_t CardType;                    /* Type 0:MMC, 1:SDC, 2:Block addressing */
static uint8_t PowerFlag = 0;               /* Power flag */

/***************************************
 * SPI functions
 **************************************/

/* slave select */
static void SELECT(void)
{
   
    HAL_GPIO_WritePin(SD_CS_PORT, SD_CS_PIN, GPIO_PIN_RESET);
    HAL_Delay(1);
}

/* slave deselect */
static void DESELECT(void)
{
   
    HAL_GPIO_WritePin(SD_CS_PORT, SD_CS_PIN, GPIO_PIN_SET);
    HAL_Delay(1);
}

/* SPI transmit a byte */
static void SPI_TxByte(uint8_t data)
{
   
    while(!__HAL_SPI_GET_FLAG(HSPI_SDCARD, SPI_FLAG_TXE));
    HAL_SPI_Transmit(HSPI_SDCARD, &data, 1, SPI_TIMEOUT);
}

/* SPI transmit buffer */
static void SPI_TxBuffer(uint8_t* buffer, uint16_t len)
{
   
    while(!__HAL_SPI_GET_FLAG(HSPI_SDCARD, SPI_FLAG_TXE));
    HAL_SPI_Transmit(HSPI_SDCARD, buffer, len, SPI_TIMEOUT);
}

/* SPI receive a byte */
static uint8_t SPI_RxByte(void)
{
   
    uint8_t dummy, data;
    dummy = 0xFF;

    while(!__HAL_SPI_GET_FLAG(HSPI_SDCARD, SPI_FLAG_TXE));
    HAL_SPI_TransmitReceive(HSPI_SDCARD, &dummy, &data, 1, SPI_TIMEOUT);

    return data;
}

/* SPI receive a byte via pointer */
static void SPI_RxBytePtr(uint8_t* buff)
{
   
    *buff = SPI_RxByte();
}

/***************************************
 * SD functions
 **************************************/

/* wait SD ready */
static uint8_t SD_ReadyWait(void)
{
   
    uint8_t res;

    /* timeout 500ms */
    int32_t Timer2 = 0xffffff;

    /* if SD goes ready, receives 0xFF */
    do
    {
   
        res = SPI_RxByte();
        Timer2--;
    }
    while((res != 0xFF) && Timer2 > 0);

    return res;
}

/* power on */
static void SD_PowerOn(void)
{
   
    uint8_t args[6];
    uint32_t cnt = 0x1FFF;

    /* transmit bytes to wake up */
    DESELECT();
    for(int i = 0; i < 10; i++)
    {
   
        SPI_TxByte(0xFF);
    }

    /* slave select */
    SELECT();

    /* make idle state */
    args[0] = CMD0;   /* CMD0:GO_IDLE_STATE */
    args[1] = 0;
    args[2] = 0;
    args[3] = 0;
    args[4] = 0;
    args[5] = 0x95;   /* CRC */

    SPI_TxBuffer(args, sizeof(args));

    /* wait response */
    while((SPI_RxByte() != 0x01) && cnt)
    {
   
        cnt--;
    }

    DESELECT();
    SPI_TxByte(0XFF);

    PowerFlag = 1;
}

/* power off */
static void SD_PowerOff(void)
{
   
    PowerFlag = 0;
}

/* check power flag */
static uint8_t SD_CheckPower(void)
{
   
    return PowerFlag;
}

/* receive data block */
static bool SD_RxDataBlock(BYTE* buff, UINT len)
{
   
    uint8_t token;

    /* timeout 200ms */
    int32_t Timer1 = 0xffffff;

    /* loop until receive a response or timeout */
    do
    {
   
        token = SPI_RxByte();
        Timer1--;
    }
    while((token == 0xFF) && Timer1 > 0);

    /* invalid response */
    if(token != 0xFE) return FALSE;

    /* receive data */
    do
    {
   
        SPI_RxBytePtr(buff++);
    }
    while(len--);

    /* discard CRC */
    SPI_RxByte();
    SPI_RxByte();

    return TRUE;
}

/* transmit data block */
#if _USE_WRITE == 1
static bool SD_TxDataBlock(const uint8_t* buff, BYTE token)
{
   
    uint8_t resp;
    uint8_t i = 0;

    /* wait SD ready */
    if(SD_ReadyWait() != 0xFF) return FALSE;

    /* transmit token */
    SPI_TxByte(token);

    /* if it's not STOP token, transmit data */
    if(token != 0xFD)
    {
   
        SPI_TxBuffer((uint8_t*)buff, 512);

        /* discard CRC */
        SPI_RxByte();
        SPI_RxByte();

        /* receive response */
        while(i <= 64)
        {
   
            resp = SPI_RxByte();

            /* transmit 0x05 accepted */
            if((resp & 0x1F) == 0x05) break;
            i++;
        }

        /* recv buffer clear */
        while(SPI_RxByte() == 0);
    }

    /* transmit 0x05 accepted */
    if((resp & 0x1F) == 0x05) return TRUE;

    return FALSE;
}
#endif /* _USE_WRITE */

/* transmit command */
static BYTE SD_SendCmd(BYTE cmd, uint32_t arg)
{
   
    uint8_t crc, res;

    /* wait SD ready */
    if(SD_ReadyWait() != 0xFF) return 0xFF;

    /* transmit command */
    SPI_TxByte(cmd);          /* Command */
    SPI_TxByte((uint8_t)(arg >> 24));   /* Argument[31..24] */
    SPI_TxByte((uint8_t)(arg >> 16));   /* Argument[23..16] */
    SPI_TxByte((uint8_t)(arg >> 8));  /* Argument[15..8] */
    SPI_TxByte((uint8_t)arg);       /* Argument[7..0] */

    /* prepare CRC */
    if(cmd == CMD0) crc = 0x95; /* CRC for CMD0(0) */
    else if(cmd == CMD8) crc = 0x87;  /* CRC for CMD8(0x1AA) */
    else crc = 1;

    /* transmit CRC */
    SPI_TxByte(crc);

    /* Skip a stuff byte when STOP_TRANSMISSION */
    if(cmd == CMD12) SPI_RxByte();

    /* receive response */
    uint8_t n = 10;
    do
    {
   
        res = SPI_RxByte();
    }
    while((res & 0x80) && --n);

    return res;
}

/***************************************
 * user_diskio.c functions
 **************************************/

/* initialize SD */
DSTATUS SD_disk_initialize(BYTE drv)
{
   
    uint8_t n, type, ocr[4];

    /* single drive, drv should be 0 */
    if(drv) return STA_NOINIT;

    /* no disk */
    if(Stat & STA_NODISK) return Stat;

    /* power on */
    SD_PowerOn();

    /* slave select */
    SELECT()<

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2242794.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

kafka管理工具

文章目录 前言一、Kafka Assistan1.1 描述1.2、配置安装 二、Conduktor2.1、描述2.2、配置安装 三、kafka-maneger3.1、描述3.2、配置安装3.3、命令启动3.4、[refer to](https://www.ctyun.cn/document/10000120/10033218#section-39755766f4910e4b) 前言 提示&#xff1a;这里…

leetcode_二叉树最大深度

对二叉树的理解 对递归调用的理解 对内存分配的理解 基础数据结构&#xff08;C版本&#xff09; - 飞书云文档 每次函数的调用 都会进行一次新的栈内存分配 所以lmax和rmax的值不会混在一起 /*** Definition for a binary tree node.* struct TreeNode {* int val;* …

使用 Axios 拦截器优化 HTTP 请求与响应的实践

目录 前言1. Axios 简介与拦截器概念1.1 Axios 的特点1.2 什么是拦截器 2. 请求拦截器的应用与实践2.1 请求拦截器的作用2.2 请求拦截器实现 3. 响应拦截器的应用与实践3.1 响应拦截器的作用3.2 响应拦截器实现 4. 综合实例&#xff1a;一个完整的 Axios 配置5. 使用拦截器的好…

高亚科技签约美妥维志化工,提升业务协同与项目运营效率

近日&#xff0c;中国企业管理软件资深服务商高亚科技与韶关美妥维志化工有限公司&#xff08;以下简称“美妥维志”&#xff09;正式签约。基于高亚科技的8Manage PM项目管理软件&#xff0c;美妥维志将实现项目进度、人员审批及问题的统一管理&#xff0c;提升部门间协同效率…

使用真实 Elasticsearch 进行更快的集成测试

作者&#xff1a;来自 Elastic Piotr Przybyl 了解如何使用各种数据初始化和性能改进技术加快 Elasticsearch 的自动化集成测试速度。 在本系列的第 1 部分中&#xff0c;我们探讨了如何编写集成测试&#xff0c;让我们能够在真实的 Elasticsearch 环境中测试软件&#xff0c;并…

数据分布之指数分布(sample database classicmodels _No.10)

数据分布之指数分布&#xff08;sample database classicmodels _No.10&#xff09; 准备工作&#xff0c;可以去下载 classicmodels 数据库具体如下 点击&#xff1a;classicmodels 也可以去 下面我的博客资源下载 https://download.csdn.net/download/tomxjc/88685970 文章…

RPC-健康检测机制

什么是健康检测&#xff1f; 在真实环境中服务提供方是以一个集群的方式提供服务&#xff0c;这对于服务调用方来说&#xff0c;就是一个接口会有多个服务提供方同时提供服务&#xff0c;调用方在每次发起请求的时候都可以拿到一个可用的连接。 健康检测&#xff0c;能帮助从连…

Flink_DataStreamAPI_执行环境

DataStreamAPI_执行环境 1创建执行环境1.1getExecutionEnvironment1.2createLocalEnvironment1.3createRemoteEnvironment 2执行模式&#xff08;Execution Mode&#xff09;3触发程序执行 Flink程序可以在各种上下文环境中运行&#xff1a;我们可以在本地JVM中执行程序&#x…

Cyberchef配合Wireshark提取并解析HTTP/TLS流量数据包中的文件

本文将介绍一种手动的轻量级的方式&#xff0c;还原HTTP/TLS协议中传输的文件&#xff0c;为流量数据包中的文件分析提供帮助。 如果捕获的数据包中存在非文本类文件&#xff0c;例如png,jpg等图片文件&#xff0c;或者word&#xff0c;Excel等office文件异或是其他类型的二进…

Golang云原生项目:—实现ping操作

熟悉报文结构 ICMP校验和算法&#xff1a; 报文内容&#xff0c;相邻两个字节拼接到一起组成一个16bit数&#xff0c;将这些数累加求和若长度为奇数&#xff0c;则将剩余一个字节&#xff0c;也累加求和得出总和之后&#xff0c;将和值的高16位与低16位不断求和&#xff0c;直…

基于STM32 HAL库的FFT计算与数学运算:幅值、频率、均方根、平均值、最大值、最小值、峰峰值与标准差

一、用STM32进行FFT计算与数学运算的过程 1. 信号采集 首先&#xff0c;我们需要使用STM32的ADC模块来采集模拟信号&#xff0c;比如三相交流电。ADC将模拟信号&#xff08;如电压或电流&#xff09;转换为数字信号&#xff0c;供后续处理。 采样数量&#xff1a;FFT的计算通…

关于Github报错Verify your two-factor authentication (2FA) settings的解决方案

如果我们在使用GitHub出现2FA验证问题&#xff1a;Verify your two-factor authentication (2FA) settings&#xff0c;那么可以参考下面的解决方法解决问题。 当然&#xff0c;如果有国外的手机号直接使用验证码接收就可以&#xff0c;问题是不支持中国手机啊。那么怎么办呢&…

【机器学习chp2】贝叶斯最优分类器、概率密度函数的参数估计、朴素贝叶斯分类器、高斯判别分析。万字超详细分析总结与思考

前言&#xff0c;请先看。 本文的《一》《二》属于两个单独的知识点&#xff1a;共轭先验和Laplace平滑&#xff0c;主要因为他们在本文的后续部分经常使用&#xff0c;又因为他们是本人的知识盲点&#xff0c;所以先对这两个知识进行了分析&#xff0c;后续内容按照标题中的顺…

游戏引擎学习第16天

视频参考:https://www.bilibili.com/video/BV1mEUCY8EiC/ 这些字幕讨论了编译器警告的概念以及如何在编译过程中启用和处理警告。以下是字幕的内容摘要&#xff1a; 警告的定义&#xff1a;警告是编译器用来告诉你某些地方可能存在问题&#xff0c;尽管编译器不强制要求你修复…

01.防火墙概述

防火墙概述 防火墙概述1. 防火墙的分类2. Linux 防火墙的基本认识3. netfilter 中五个勾子函数和报文流向 防火墙概述 防火墙&#xff08; FireWall &#xff09;&#xff1a;隔离功能&#xff0c;工作在网络或主机边缘&#xff0c;对进出网络或主机的数据包基于一定的 规则检…

express 从0-1如何创建一个项目 注册接口

内容参考&#xff1a; windos下安装mysql express 使用mysql 一、创建一个空项目 二、创建一个包管理工具 npm init -y三、安装需要的插件及app.js的部分实现 npm i express 安装express 框架 npm i cors 安装cors 用于跨域 npm install mysql2 安装mysql数据库 npm i b…

Shell基础(4)

声明&#xff01; 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团…

(长期更新)《零基础入门 ArcGIS(ArcMap) 》实验一(下)----空间数据的编辑与处理(超超超详细!!!)

续上篇博客&#xff08;长期更新&#xff09;《零基础入门 ArcGIS(ArcMap) 》实验一&#xff08;上&#xff09;----空间数据的编辑与处理&#xff08;超超超详细&#xff01;&#xff01;&#xff01;&#xff09;-CSDN博客 继续更新 本篇博客内容为道路拓扑检查与修正&#x…

Python防检测之鼠标移动轨迹算法

一.简介 鼠标轨迹算法是一种模拟人类鼠标操作的程序&#xff0c;它能够模拟出自然而真实的鼠标移动路径。 鼠标轨迹算法的底层实现采用C/C语言&#xff0c;原因在于C/C提供了高性能的执行能力和直接访问操作系统底层资源的能力。 鼠标轨迹算法具有以下优势&#xff1a; 模拟…

3D编辑器教程:如何实现3D模型多材质定制效果?

想要实现下图这样的产品DIY定制效果&#xff0c;该如何实现&#xff1f; 可以使用51建模网线上3D编辑器的材质替换功能&#xff0c;为产品3D模型每个部位添加多套材质贴图&#xff0c;从而让3D模型在展示时实现DIY定制效果。 具体操作流程如下&#xff1a; 第1步&#xff1a;上…