ROS进阶:使用URDF和Xacro构建差速轮式机器人模型

news2024/11/17 5:43:05

前言

本篇文章介绍的是ROS高效进阶内容,使用URDF 语言(xml格式)做一个差速轮式机器人模型,并使用URDF的增强版xacro,对机器人模型文件进行二次优化。

差速轮式机器人:两轮差速底盘由两个动力轮位于底盘左右两侧,两轮独立控制速度,通过给定不同速度实现底盘转向控制。一般会配有一到两个辅助支撑的万向轮。

此次建模,不引入算法,只是把机器人模型的样子做出来,所以只使用 rivz 进行可视化显示。

机器人的定义和构成

  1. 机器人定义:机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高级灵活性的自动化机器。目前,自动驾驶汽车也被认为是一种机器人。

  2. 机器人构成:机器人通常分为四大部分,即执行机构,驱动系统,传感系统和控制系统。以自动驾驶汽车为例,执行机构就是油门,转向和刹车;驱动系统就是电动机;传感系统就是各种传感器:lidar,radar,camera,uss,imu,GNSS;控制系统就是智驾算法系统:感知,定位,规划和控制。

  3. 机器人四大部分的控制回路,大致如图:

URDF建模套路

  1. URDF:Unified Robot Description Format,统一的机器人描述文件格式。urdf 文件使用 xml 格式。

  2. 用 urdf 描述机器人,套路如下:每个机器人都是由多个 link(连杆) 和 joint(关节)组成。这里的 link 和joint 很宽泛,形状不一定是杆和轴。比如桌子,桌面和腿都是link,连接处是固定的 joint。

<?xml version="1.0" ?>
<robot name="name of robot">
	<link> ... </link>
	<joint> ... </joint>
	...
</robot>

  1. link:描述机器人某个刚体部分的外观和物理属性。外观包括:尺寸,颜色,形状。物理属性包括:惯性矩阵(inertial matrix)和碰撞参数(collision properties)。在机器人建模中,每个link 都是一个坐标系。下面是差速轮式机器人底盘的建模,底盘一般称为 base。

  <link name="base_link">
  	// visual 标签就是外观
    <visual>
      // base_link本身是个坐标系,这也是差速轮式机器人各组成部分的根坐标系,一般会把他的坐标原点设置在rviz的中心处
      // origin表示底盘在其base_link坐标系下的原始位置和旋转状态
      // xyz表示底盘质心在base_link坐标系的偏移位置,rpy(roll,pitch,yaw)是底盘绕base_link的x,y,z三个轴的旋转值
      <origin xyz="0 0 0" rpy="0 0 0"/>
      // geometry是物体几何外形
      <geometry>
      	// 这里的底盘,用圆柱体表示,length值为高度,radius是半径值
        <cylinder length="0.16" radius="0.2"/>
      </geometry>
      // material是材料,这里指定底盘颜色为红色,rgba是三色+透明度表示法,三色的范围是0~1,而不是0-255
      <material name="red">
        <color rgba="1 0 0 1"/>
      </material>
    </visual>
  </link>

这里我们只进行外观建模,因此暂不涉及物理属性配置。

  1. joint:描述两个 link 之间的关系,包括运动学和动力学属性,这里暂时只关注运动学属性。通常情况下,两个 link 的关系一般分为六种:

continuous:旋转关节,可以围绕单轴360度无限旋转,比如轮子的轴

revolute:旋转关节,但是有旋转角度的范围限制,比如钟摆

prismatic:滑动关节,也叫活塞关节,沿某一轴线移动的关节,有位置限制,强调一维,比如打气筒

planar:平面关节,允许在平面正交方向上平移或旋转,强调平面,比如抽屉内外滑动

floating:浮动关节,允许进行平移和旋转运动,比如人体的肩关节

fixed:固定关节,比如桌子腿和桌面

下面是差速轮式机器人主动轮与底盘的 joint 样例:

  // joint标签就是关节,type表示链接关系
  <joint name="left_wheel_joint" type="continuous">
    // origin表示轮子在base_link坐标系下的偏移和旋转
    <origin xyz="0 0.19 -0.05" rpy="0 0 0" />
    // 根link是底盘,子link是轮子
    <parent link="base_link" />
    <child link="left_wheel_link" />
    // axis描述的轮子相对于其自身坐标系的 y 轴旋转,=
    <axis xyz="0 1 0" />
  </joint>
  
  // 这是轮子link
  <link name="left_wheel_link">
    <visual>
      // 轮子相当于其x轴,旋转90度,也就是立起来
      <origin xyz="0 0 0" rpy="1.5707 0 0"/>
      <geometry>
        <cylinder length="0.06" radius="0.06"/>
      </geometry>
      <material name="white">
        <color rgba="1 1 1 0.9"/>
      </material>
    </visual>
  </link>

使用URDF做一个差速轮式机器人模型

  1. 创建 mbot_description 软件包及相关文件

cd ~/catkin_ws/src
catkin_create_pkg mbot_description urdf xacro

cd mbot_description 
mkdir -p config doc launch meshes urdf/sensor
touch launch/display_mbot_urdf.launch launch/display_mbot_xacro.launch
touch urdf/mbot_base.urdf urdf/mbot_base.xacro
touch urdf/sensor/camera.xacro urdf/sensor/kinect.xacro urdf/sensor/laser.xacro
  1. mbot_base.urdf :这是整个mbot建模的文件,包括底盘,两个动力伦,两个万向轮,一个camera,一个kinect(深度相机),一个lidar。

<?xml version="1.0" ?>
<robot name="mbot">

  <link name="base_link">
    <visual>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
        <cylinder length="0.16" radius="0.2"/>
      </geometry>
      <material name="red">
        <color rgba="1 0 0 1"/>
      </material>
    </visual>
  </link>

  <joint name="left_wheel_joint" type="continuous">
    <origin xyz="0 0.19 -0.05" rpy="0 0 0" />
    <parent link="base_link" />
    <child link="left_wheel_link" />
    <axis xyz="0 1 0" />
  </joint>

  <link name="left_wheel_link">
    <visual>
      <origin xyz="0 0 0" rpy="1.5707 0 0"/>
      <geometry>
        <cylinder length="0.06" radius="0.06"/>
      </geometry>
      <material name="white">
        <color rgba="1 1 1 0.9"/>
      </material>
    </visual>
  </link>

  <joint name="right_wheel_joint" type="continuous">
    <origin xyz="0 -0.19 -0.05" rpy="0 0 0" />
    <parent link="base_link" />
    <child link="right_wheel_link" />
    <axis xyz="0 1 0" />
  </joint>

  <link name="right_wheel_link">
    <visual>
      <origin xyz="0 0 0" rpy="1.5707 0 0"/>
      <geometry>
        <cylinder length="0.025" radius="0.06" />
      </geometry>
      <material name="white">
        <color rgba="1 1 1 0.9"/>
      </material>
    </visual>
  </link>

  <joint name="front_caster_joint" type="continuous">
    <origin xyz="0.18 0 -0.095" rpy="0 0 0" />
    <parent link="base_link"/>
    <child link="front_caster_link" />
    <axis xyz="0 1 0" />
  </joint>

  <link name="front_caster_link">
    <visual>
      <origin xyz="0 0 0" rpy="0 0 0" />
      <geometry>
        <sphere radius="0.015" />
      </geometry>
      <material name="white">
        <color rgba="1 1 1 0.9"/>
      </material>
    </visual>
  </link>

  <joint name="back_caster_joint" type="continuous">
    <origin xyz="-0.18 0 -0.095" rpy="0 0 0" />
    <parent link="base_link"/>
    <child link="back_caster_link" />
    <axis xyz="0 1 0" />
  </joint>

  <link name="back_caster_link">
    <visual>
      <origin xyz="0 0 0" rpy="0 0 0" />
      <geometry>
        <sphere radius="0.015" />
      </geometry>
      <material name="white">
        <color rgba="1 1 1 0.9"/>
      </material>
    </visual>
  </link>

  <joint name="camera_joint" type="fixed">
    <origin xyz="-0.17 0 0.1" rpy="0 0 0" />
    <parent link="base_link"/>
    <child link="camera_link" />    
  </joint>

  <link name="camera_link">
    <visual>
      <origin xyz="0 0 0" rpy="0 0 0" />
      <geometry>
        <box size="0.03 0.04 0.04" />
      </geometry>
      <material name="grey">
        <color rgba="0.5 0.5 0.5 1"/>
      </material>
    </visual>
  </link>

  <joint name="stage_joint" type="fixed">
    <origin xyz="0 0 0.14" rpy="0 0 0" />
    <parent link="base_link"/>
    <child link="stage_link" />    
  </joint>

  <link name="stage_link">
    <visual>
      <origin xyz="0 0 0" rpy="0 0 0"/>
      <geometry>
        <cylinder length="0.12" radius="0.1"/>
      </geometry>
      <material name="red">
        <color rgba="1 0 0 1"/>
      </material>
    </visual>
  </link>

  <joint name="laser_joint" type="fixed">
    <origin xyz="0 0 0.085" rpy="0 0 0" />
    <parent link="stage_link"/>
    <child link="laser_link" />    
  </joint>

  <link name="laser_link">
    <visual>
      <origin xyz="0 0 0" rpy="0 0 0" />
      <geometry>
        <cylinder length="0.05" radius="0.05"/>
      </geometry>
      <material name="grey">
        <color rgba="0.5 0.5 0.5 1"/>
      </material>
    </visual>
  </link>

  <joint name="kinect_joint" type="fixed">
    <origin xyz="0.15 0 0.11" rpy="0 0 0" />
    <parent link="base_link"/>
    <child link="kinect_link" />    
  </joint>

  <link name="kinect_link">
    <visual>
      <origin xyz="0 0 0" rpy="0 0 1.5708" />
      <geometry>
        // 使用三维软件导出的模型文件
        <mesh filename="package://mbot_description/meshes/kinect.dae" />
      </geometry>
    </visual>
  </link>
</robot>
  1. display_mbot_urdf.launch

<launch>
  // 设置ros的全局参数robot_description,指定机器人模型文件
  <param name="robot_description" textfile="$(find mbot_description)/urdf/mbot_base.urdf" />

	<!-- 设置GUI参数,显示关节控制插件 -->
	// 用这个可以控制机器人关节,但本文的demo没看到这个,有点遗憾
	<param name="use_gui" value="true"/>

	<!-- 运行joint_state_publisher节点,发布机器人的关节状态  -->
	<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />

	<!-- 运行robot_state_publisher节点,发布tf  -->
	<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" />

	// robot_state_publisher结合joint_state_publisher可以实时把机器人各关节和各坐标系关系发布出来,让rviz显示。如果不设置,rviz无法完整加载机器人模型。
	// rviz显示后会生成配置文件,保存后再打开,就不用频繁设置了。
	<!-- 运行rviz可视化界面 -->
	<node name="rviz" pkg="rviz" type="rviz" args="-d $(find mbot_description)/config/mbot_urdf.rviz" required="true" />

</launch>
  1. 使用 urdf_to_graphiz 命令行工具可以把 urdf 文件的内容,以树的样子dump出来,格式是pdf。使用这个可以快速读取 urdf 的 link 和 joint,下图是上面例子的节点树状图。

cd ~/catkin_ws/
urdf_to_graphiz src/mbot_description/urdf/mbot_base.urdf

  1. 编译和运行

cd ~/catkin_ws/
catkin_make --source src/mbot_description
source devel/setup.bash
roslaunch mbot_description display_mbot_urdf.launch

使用xacro优化差速轮式机器人模型

  1. 原始的urdf语法比较简单,导致机器人模型文件比较冗长啰嗦,比如两个动力轮,两个万向轮的编写就非常重复。ROS 提出了xacro语法,让机器人模型文件具有可编程能力,比如设置参数,定义宏函数并调用,文件包含等。下面进行分类举例:设置并调用参数:

   // xacro:property设置参数
  <xacro:property name="M_PI" value="3.1415926" />
  // 引用参数用${}
  <origin xyz="0 0 0" rpy="${M_PI/2} 0 0"/>

设置宏函数并调用:

  // xacro:macro设置宏函数,名字是wheel,参数是prefix 和 reflect
  <xacro:macro name="wheel" params="prefix reflect">
    <joint name="${prefix}_wheel_joint" type="continuous">
      <origin xyz="${wheel_joint_x} ${reflect*wheel_joint_y} ${-wheel_joint_z}" rpy="0 0 0" />
      <parent link="base_link" />
      <child link="${prefix}_wheel_link" />
      <axis xyz="0 1 0" />
    </joint>

    <link name="${prefix}_wheel_link">
      <visual>
        <origin xyz="0 0 0" rpy="${M_PI/2} 0 0"/>
        <geometry>
          <cylinder length="${wheel_length}" radius="${wheel_radius}"/>
        </geometry>
        <material name="white" />
      </visual>
    </link>
  </xacro:macro>
  // 调用wheel宏函数
  <xacro:wheel prefix="left"  reflect="1"/>  
  <xacro:wheel prefix="right"  reflect="-1"/>  

文件包含

  // xacro:include是文件包含,camera.xacro里面定义了一个宏函数
  <xacro:include filename="$(find mbot_description)/urdf/sensor/camera.xacro" />
  // 调用camera.xacro里面的宏函数
  <xacro:usb_camera joint_x="${camera_joint_x}" joint_y="${camera_joint_y}" joint_z="${camera_joint_z}"/>  
  1. 这里的几个文件是对上面的mbot_base.urdf的重写,使用xacro,具体语法看上面的解释。mbot_base.xacro

<?xml version="1.0" ?>
<robot name="mbot" xmlns:xacro="http://www.ros.org/wiki/xacro">
  <xacro:property name="M_PI" value="3.1415926" />

  <xacro:property name="wheel_joint_x" value="0" />
  <xacro:property name="wheel_joint_y" value="0.19" />
  <xacro:property name="wheel_joint_z" value="0.05" />

  <xacro:property name="wheel_length" value="0.06" />
  <xacro:property name="wheel_radius" value="0.06" />

  <xacro:property name="caster_joint_x" value="0.18" />
  <xacro:property name="caster_joint_y" value="0" />
  <xacro:property name="caster_joint_z" value="0.095" />  

  <xacro:property name="caster_radius" value="0.015" />

  <xacro:property name="base_length" value="0.16" />
  <xacro:property name="base_radius" value="0.2" />

  <xacro:property name="stage_length" value="0.12" />
  <xacro:property name="stage_radius" value="0.1" />

  <xacro:property name="camera_joint_x" value="0.17" />
  <xacro:property name="camera_joint_y" value="0" />
  <xacro:property name="camera_joint_z" value="0.1" />  

  <xacro:property name="kinect_joint_x" value="0.15" />
  <xacro:property name="kinect_joint_y" value="0" />
  <xacro:property name="kinect_joint_z" value="0.11" />  

  <xacro:property name="laser_joint_x" value="0" />
  <xacro:property name="laser_joint_y" value="0" />
  <xacro:property name="laser_joint_z" value="0.085" />  

  <material name="white">
    <color rgba="1 1 1 0.9"/>
  </material>
  <material name="red">
    <color rgba="1 0 0 1"/>
  </material>

  <material name="grey">
    <color rgba="0.5 0.5 0.5 1"/>
  </material>

  <xacro:macro name="base_stage">
    <link name="base_link">
      <visual>
        <origin xyz="0 0 0" rpy="0 0 0"/>
        <geometry>
          <cylinder length="${base_length}" radius="${base_radius}"/>
        </geometry>
        <material name="red" />
      </visual>
    </link>

    <joint name="stage_joint" type="fixed">
      <origin xyz="0 0 ${(base_length + stage_length)/2}" rpy="0 0 0" />
      <parent link="base_link"/>
      <child link="stage_link" />    
    </joint>

    <link name="stage_link">
      <visual>
        <origin xyz="0 0 0" rpy="0 0 0"/>
        <geometry>
          <cylinder length="${stage_length}" radius="${stage_radius}"/>
        </geometry>
        <material name="red" />
      </visual>
    </link>
  </xacro:macro>

  <xacro:macro name="wheel" params="prefix reflect">
    <joint name="${prefix}_wheel_joint" type="continuous">
      <origin xyz="${wheel_joint_x} ${reflect*wheel_joint_y} ${-wheel_joint_z}" rpy="0 0 0" />
      <parent link="base_link" />
      <child link="${prefix}_wheel_link" />
      <axis xyz="0 1 0" />
    </joint>

    <link name="${prefix}_wheel_link">
      <visual>
        <origin xyz="0 0 0" rpy="${M_PI/2} 0 0"/>
        <geometry>
          <cylinder length="${wheel_length}" radius="${wheel_radius}"/>
        </geometry>
        <material name="white" />
      </visual>
    </link>
  </xacro:macro>

  <xacro:macro name="caster" params="prefix reflect">
    <joint name="${prefix}_caster_joint" type="continuous">
      <origin xyz="${reflect*caster_joint_x} ${caster_joint_y} ${-caster_joint_z}" rpy="0 0 0" />
      <parent link="base_link"/>
      <child link="${prefix}_caster_link" />
      <axis xyz="0 1 0" />
    </joint>

    <link name="${prefix}_caster_link">
      <visual>
        <origin xyz="0 0 0" rpy="0 0 0" />
        <geometry>
          <sphere radius="${caster_radius}" />
        </geometry>
        <material name="white" />
      </visual>
    </link>
  </xacro:macro>

  <xacro:base_stage />  
  <xacro:wheel prefix="left"  reflect="1"/>  
  <xacro:wheel prefix="right"  reflect="-1"/>  

  <xacro:caster prefix="front"  reflect="1"/>  
  <xacro:caster prefix="back"  reflect="-1"/>  

  <xacro:include filename="$(find mbot_description)/urdf/sensor/camera.xacro" />
  <xacro:usb_camera joint_x="${camera_joint_x}" joint_y="${camera_joint_y}" joint_z="${camera_joint_z}"/>  

  <xacro:include filename="$(find mbot_description)/urdf/sensor/kinect.xacro" />
  <xacro:kinect joint_x="${kinect_joint_x}" joint_y="${kinect_joint_y}" joint_z="${kinect_joint_z}"/>  

  <xacro:include filename="$(find mbot_description)/urdf/sensor/laser.xacro" />
  <xacro:laser joint_x="${laser_joint_x}" joint_y="${laser_joint_y}" joint_z="${laser_joint_z}"/>  

</robot>

camera.xacro

<?xml version="1.0" ?>
<robot name="mbot" xmlns:xacro="http://www.ros.org/wiki/xacro">
  <xacro:macro name="usb_camera" params="joint_x joint_y joint_z">
    <joint name="camera_joint" type="fixed">
      <origin xyz="${-joint_x} ${joint_y} ${joint_z}" rpy="0 0 0" />
      <parent link="base_link"/>
      <child link="camera_link" />    
    </joint>

    <link name="camera_link">
      <visual>
        <origin xyz="0 0 0" rpy="0 0 0" />
        <geometry>
          <box size="0.03 0.04 0.04" />
        </geometry>
        <material name="grey" />
      </visual>
    </link>
  </xacro:macro>
</robot>

kinect.xacro

<?xml version="1.0" ?>
<robot name="mbot" xmlns:xacro="http://www.ros.org/wiki/xacro">

  <xacro:macro name="kinect" params="joint_x joint_y joint_z">
    <joint name="kinect_joint" type="fixed">
      <origin xyz="${joint_x} ${joint_y} ${joint_z}" rpy="0 0 0" />
      <parent link="base_link"/>
      <child link="kinect_link" />    
    </joint>

    <link name="kinect_link">
      <visual>
        <origin xyz="0 0 0" rpy="0 0 1.5708" />
        <geometry>
          <mesh filename="package://mbot_description/meshes/kinect.dae" />
        </geometry>
      </visual>
    </link>
  </xacro:macro>

</robot>

laser.xacro

<?xml version="1.0" ?>
<robot name="mbot" xmlns:xacro="http://www.ros.org/wiki/xacro">

  <xacro:macro name="laser" params="joint_x joint_y joint_z">
    <joint name="laser_joint" type="fixed">
      <origin xyz="${joint_x} ${joint_y} ${joint_z}" rpy="0 0 0" />
      <parent link="stage_link"/>
      <child link="laser_link" />    
    </joint>

    <link name="laser_link">
      <visual>
        <origin xyz="0 0 0" rpy="0 0 0" />
        <geometry>
          <cylinder length="0.05" radius="0.05"/>
        </geometry>
        <material name="grey"/>
      </visual>
    </link>
  </xacro:macro>
</robot>
  1. display_mbot_xacro.launch

<launch>
	// 引入xacro的解释器,不然无法读取 .xacro文件
	<arg name="model" default="$(find xacro)/xacro '$(find mbot_description)/urdf/mbot_base.xacro'" />

	<param name="robot_description" command="$(arg model)" />

	<!-- 设置GUI参数,显示关节控制插件 -->
	<param name="use_gui" value="true"/>

	<!-- 运行joint_state_publisher节点,发布机器人的关节状态  -->
	<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />

	<!-- 运行robot_state_publisher节点,发布tf  -->
	<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" />

	<!-- 运行rviz可视化界面 -->
	<node name="rviz" pkg="rviz" type="rviz" args="-d $(find mbot_description)/config/mbot_xacro.rviz" required="true" />

</launch>
  1. 运行效果如下,这里显示了坐标系轴

部分配置代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2241965.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Playwright + Python】系列(十)利用 Playwright 完美处理 Dialogs 对话框

哈喽&#xff0c;大家好&#xff0c;我是六哥&#xff01;今天我来给大家分享一下如何使用playwight处理Dialogs对话框&#xff0c;面向对象为功能测试及零基础小白&#xff0c;这里我尽量用大白话的方式举例讲解&#xff0c;力求所有人都能看懂&#xff0c;建议大家先收藏&…

控制器ThinkPHP6

五、控制器中对数组值的返回 在做接口服务时&#xff0c;很多时候回使用数组作为返回值&#xff0c;那么数组如何返回成 json呢&#xff1f; 在 tp6 中返回json 很简单&#xff0c;直接使用 json 进行返回即可&#xff0c;例如&#xff1a; public function index(){$resarra…

基于Java Springboot城市交通管理系统

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术&#xff1a;Html、Css、Js、Vue、Element-ui 数据库&#xff1a;MySQL 后端技术&#xff1a;Java、Spring Boot、MyBatis 三、运行环境 开发工具&#xff1a;IDEA/eclipse 数…

Ubuntu24.04挂载磁盘

一、引言 由于几块磁盘每次开机时的编号都不一样&#xff0c;造成了很多麻烦&#xff0c;所有重新挂载磁盘试一试。 参考链接&#xff1a; ubuntu挂载磁盘或U盘Ubuntu添加新硬盘&#xff0c;挂载到根目录下的某个文件中 二、挂载磁盘 1. 查看盘名 sudo fdisk -l sda 代表第…

springboot003基于springboot的图书个性化推荐系统(源码+包运行+LW+技术指导)

项目描述 临近学期结束&#xff0c;还是毕业设计&#xff0c;你还在做java程序网络编程&#xff0c;期末作业&#xff0c;老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。这里根据疫情当下&#xff0c;你想解决的问…

【React】状态管理之Zustand

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 状态管理之Zustand引言1. Zustand 的核心特点1.1 简单直观的 API1.2 无需 Provi…

【从零开始的LeetCode-算法】3210. 找出加密后的字符串

给你一个字符串 s 和一个整数 k。请你使用以下算法加密字符串&#xff1a; 对于字符串 s 中的每个字符 c&#xff0c;用字符串中 c 后面的第 k 个字符替换 c&#xff08;以循环方式&#xff09;。 返回加密后的字符串。 示例 1&#xff1a; 输入&#xff1a; s "dart&…

Vue的局部使用

文章目录 什么是Vue?局部使用Vue快速入门 常用指令v-forv-bindv-if & v-showv-onv-model Vue生命周期 Axios案例 什么是Vue? Vue是一款构建用户界面的渐进式的JavaScript框架. 局部使用Vue 快速入门常用指令声明周期 快速入门 准备: 准备html页面,并引入Vue模块(…

二分查找法(leetcode 704)

在一个数组里找一个target&#xff0c;判断这个target在不在这个数组里&#xff0c;如果在&#xff0c;返回这个数组所对应的这个元素所对应的下标&#xff0c;否则返回-1. 易错点&#xff1a; &#xff08;1&#xff09;while(left<right) vs while(left<…

Mysql-DQL条件查询

文章目录 条件查询比较运算符逻辑运算符范围like 关键字排序单列顺序组合排序 聚合函数分组基本的分组流程参数的区别 limit 语句limit 语法格式limit 的使用场景 &#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f916;Mysql专栏&#xff1a;点击&#xff01; ⏰…

Linux(光速安装+centos镜像 图片+大白话)

阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区 软件需要 Vmware 下载镜像 下载前需要知道DVD就是标准版 everything就是全家桶 centos8 centos7 规划 假如有一个200G的硬盘 环境配置分区1/100G分区2/boot1G分区3/data50G分区4swap2G&#xff08;内存2 这里忘2了&…

仓库管理系统设计与实现(Java+Mysql)

目 录 摘 要 目 录 第1章 绪论 1.1 研究背景 1.2目的和意义 1.3 论文研究内容 第2章 程序开发技术 2.1 MySQL数据库 2.2 Java语言 第3章 系统分析 3.1可行性分析 3.1.1技术可行性分析 3.1.2经济可行性分析 3.1.3操作可行性分析 3.2系统运行环境 3.3系统流程分…

CentOS 8 安装 chronyd 服务

操作场景 目前原生 CentOS 8 不支持安装 ntp 服务&#xff0c;因此会发生时间不准的问题&#xff0c;需使用 chronyd 来调整时间服务。CentOS 8以及 TencentOS 3.1及以上版本的实例都使用 chronyd 服务实现时钟同步。本文介绍了如何在 CentOS 8 操作系统的腾讯云服务器上安装并…

datawhale11月组队学习 模型压缩技术3:2:4结构稀疏化BERT模型

文章目录 一、 半结构化稀疏性简介二、 代码实践2.1 定义辅助函数2.2 加载模型、tokenizer和数据集2.3 测试baseline模型指标2.4 对BERT-base模型进行半结构稀疏化 《datawhale2411组队学习之模型压缩技术1&#xff1a;模型剪枝&#xff08;上&#xff09;》&#xff1a;介绍模…

大数据学习15之Scala集合与泛型

1. 概述 大部分编程语言都提供了数据结构对应的编程库&#xff0c;并称之为集合库(Collection Library)&#xff0c;Scala 也不例外&#xff0c;且它还拥有以下优点&#xff1a; 易用&#xff1a;灵活组合运用集合库提供的方法&#xff0c;可以解决大部分集合问题 简洁&#xf…

force stop和pm clear的区别

前言&#xff1a;因为工作中遇到force stop和pm clear进程后&#xff0c;进程不能再次挂起&#xff0c;谷歌系统共性问题&#xff0c;服务类应用经清缓存后当下服务就会挂掉&#xff0c;需要系统重启才能恢复。为了更好的“丢锅”&#xff0c;需要进一步学习force stop和pm cle…

SAP+Internet主题HTML样式选择

SAP目前只支持三种HTML样式选择&#xff1a; 样式一 背景色&#xff1a;深色&#xff0c;蓝 特点&#xff1a;适中型排列&#xff0c;与SAP界面排列相同&#xff0c;富含UI特征&#xff0c;整齐美观 URL地址&#xff1a;http://cn1000-sap-01.sc.com:8000/sap/bc/gui/sap/it…

VBA学习笔记:点击单元格显示指定的列

应用场景&#xff1a; 表格中列数较多&#xff0c;特定条件下隐藏一些无关的列&#xff0c;只保留相关的列&#xff0c;使表格更加清晰。 示例&#xff1a;原表格如下 点击一年级&#xff0c;只显示一年级相关的科目&#xff1a; 点击二年级&#xff0c;只显示二年级相关的科…

java版嘎嘎快充汽车单车充电系统源码系统jeecgboot

汽车使用云快充1.6 1.5协议&#xff0c;单车用的铁塔协议 前端uniapp、后端jeecgbootvue2

这些场景不适合用Selenium自动化!看看你踩过哪些坑?

Selenium是自动化测试中的一大主力工具&#xff0c;其强大的网页UI自动化能力&#xff0c;让测试人员可以轻松模拟用户操作并验证系统行为。然而&#xff0c;Selenium并非万能&#xff0c;尤其是在某些特定场景下&#xff0c;可能并不适合用来自动化测试。本文将介绍Selenium不…