机器学习 决策树

news2024/11/16 23:35:43

决策树-分类

1 概念

1、决策节点通过条件判断而进行分支选择的节点。如:将某个样本中的属性值(特征值)与决策节点上的值进行比较,从而判断它的流向。

2、叶子节点没有子节点的节点,表示最终的决策结果。

3、决策树的深度所有节点的最大层次数。

决策树具有一定的层次结构,根节点的层次数定为0,从下面开始每一层子节点层次数增加

决策树优点:

​ 可视化 - 可解释能力-对算力要求低

 决策树缺点:

​ 容易产生过拟合,所以不要把深度调整太大了。

集成学习方法之随机森林

机器学习中有一种大类叫集成学习(Ensemble Learning),集成学习的基本思想就是将多个分类器组合,从而实现一个预测效果更好的集成分类器。集成算法可以说从一方面验证了中国的一句老话:三个臭皮匠,赛过诸葛亮。集成算法大致可以分为:Bagging,Boosting 和 Stacking 三大类型。

(1)每次有放回地从训练集中取出 n 个训练样本,组成新的训练集;

(2)利用新的训练集,训练得到M个子模型;

(3)对于分类问题,采用投票的方法,得票最多子模型的分类类别为最终的类别;

随机森林就属于集成学习,是通过构建一个包含多个决策树(通常称为基学习器或弱学习器)的森林,每棵树都在不同的数据子集和特征子集上进行训练,最终通过投票或平均预测结果来产生更准确和稳健的预测。这种方法不仅提高了预测精度,也降低了过拟合风险,并且能够处理高维度和大规模数据集

from sklearn.ensemble import RandomForestClassifier
import pandas as pd 
from sklearn.feature_extraction import DictVectorizer
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

data=pd.read_csv("../src/titanic/titanic.csv")
data["age"].fillna(data["age"].mode()[0],inplace=True)
X=data[["pclass","age","sex"]]
y=data["survived"]
data.drop(["survived"],axis=1,inplace=True)
dict=data.to_dict(orient="records")
vec=DictVectorizer(sparse=False)
x=vec.fit_transform(dict)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=666)
scaler=StandardScaler()
x_train1=scaler.fit_transform(x_train)
model=RandomForestClassifier(n_estimators=100,max_depth=8,criterion="gini")
model.fit(x_train1,y_train)
x_test=scaler.transform(x_test)
rank=model.score(x_test,y_test)
print(rank)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2241816.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

右键添加获取可供WSL使用的路径,对windows文件夹也适用,即获取符合Linux规范的路径内容给WSL

文章目录 1. 功能展示1.1. 对 WSL 文件/文件夹/目录空白位置 使用1.2. 对 Windows 文件/文件夹/目录空白位置 使用1.3. Fin 2. 方法3. 文件内容3.1. AddWSLPath.reg3.2. CopyPath.vbs 4. 念念碎 1. 功能展示 1.1. 对 WSL 文件/文件夹/目录空白位置 使用 输出 /etc 1.2. 对 Wi…

新版Apache tomcat服务安装 Mac+Window双环境(笔记)

简介:Tomcat服务器器的下载和安装: 安装前提 1)电脑需要有java环境,jdk8以上,否则启动不不成功 2)已经安装Sublime⽂文件编辑软件 3)window电脑需要显示⽂文件拓拓展名 官网(https:…

网络基础(3)https和加密

http其它的报头 直接看图片: 上图中的第一个和第二个类型之前已经使用过了也就不多做说明了,第三个报头类型使用的很少了。第四个报头类型主要就使用在一些灰度更新的应用上,确定用户使用的软件的版本不让其访问该版本不能访问的功能。下一个…

vue3【实战】切换全屏【组件封装】FullScreen.vue

效果预览 原理解析 使用 vueUse 里的 useFullscreen() 实现 代码实现 技术方案 vue3 vite UnoCSS vueUse 组件封装 src/components/FullScreen.vue <template><component:is"tag"click"toggle":class"[!isFullscreen ? i-ep:full-sc…

热点更新场景,OceanBase如何实现性能优化

案例背景 这个案例来自一个保险行业的客户&#xff1a;他们的核心系统底层采用了OceanBase数据库作为存储解决方案&#xff0c;然而&#xff0c;在系统上线运行后&#xff0c;出现了一个异常情况&#xff0c;执行简单的主键更新语句时SQL执行时间出现了显著的波动。为了迅速定…

供应链管理、一件代发系统功能及源码分享 PHP+Mysql

随着电商行业的不断发展&#xff0c;传统的库存管理模式已经逐渐无法满足市场需求。越来越多的企业选择“一件代发”模式&#xff0c;即商家不需要自己储备商品库存&#xff0c;而是将订单直接转给供应商&#xff0c;由供应商直接进行发货。这种方式极大地降低了企业的运营成本…

使用Axios函数库进行网络请求的使用指南

目录 前言1. 什么是Axios2. Axios的引入方式2.1 通过CDN直接引入2.2 在模块化项目中引入 3. 使用Axios发送请求3.1 GET请求3.2 POST请求 4. Axios请求方式别名5. 使用Axios创建实例5.1 创建Axios实例5.2 使用实例发送请求 6. 使用async/await简化异步请求6.1 获取所有文章数据6…

Python Web 应用开发基础知识

Python Web 应用开发基础知识 引言 随着互联网的快速发展&#xff0c;Web 应用程序的需求日益增加。Python 作为一种简单易学且功能强大的编程语言&#xff0c;已经成为 Web 开发中广受欢迎的选择之一。本文将深入探讨 Python Web 开发的基础知识&#xff0c;包括常用框架、基…

Ubuntu 的 ROS 2 操作系统 turtlebot3 gazebo仿真

引言 TurtleBot3 Gazebo仿真环境是一个非常强大的工具&#xff0c;能够帮助开发者在虚拟环境中测试和验证机器人算法。 Gazebo是一个开源的3D机器人仿真平台&#xff0c;它能支持物理引擎&#xff0c;允许机器人在虚拟环境中模拟和测试。结合ROS&#xff0c;它能提供一个完整的…

前后端交互之动态列

一. 情景 在做项目时&#xff0c;有时候后会遇到后端使用了聚合函数&#xff0c;导致生成的对象的属性数量或数量不固定&#xff0c;因此无法建立一个与之对应的对象来向前端传递数据&#xff0c;这时可以采用NameDataListVO向前端传递数据。 Data Builder AllArgsConstructo…

json转excel,读取json文件写入到excel中【rust语言】

一、rust代码 将json文件写入到 excel中。&#xff08;保持json &#xff1a;key原始顺序&#xff09; 可执行程序: 「json2excel.exe」 链接&#xff1a;https://pan.quark.cn/s/fe851c86c659 use indexmap::IndexMap; use serde::Deserialize; use serde_json::{Value,…

【python系列】python数据类型之数字类型

1.定义 数字类型是编程中最常用的数据类型。什么是数字类型&#xff0c;下面是数字类型官方文档的解释&#xff1a;https://docs.python.org/zh-cn/3.10/library/stdtypes.html?highlightstr%20join#numeric-types-int-float-complex 以上可以知道&#xff1a; 数字类型包…

[Redis] Redis服务集群

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏: &#x1f9ca; Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 &#x1f355; Collection与…

LLaMA-Factory全流程训练模型

&#x1f917;本文主要讲述在docker下使用LLaMA-Factory训练推理模型。 &#x1fae1;拉取镜像 首先需要启动docker&#xff0c;然后在终端中输入&#xff1a; docker run -tid --gpus all -p 8000:8000 --name LLM -e NVIDIA_DRIVER_CAPABILITIEScompute,utility -e NVIDIA…

计算机组成原理对于学习嵌入式开发的意义

计算机组成原理对于学习嵌入式开发的意义 前言 最近有位同学向我咨询&#xff0c;问学习嵌入式开发需不需要学习硬件&#xff1f;进而引申到了需不需要学习计算机组成原理呢&#xff1f; 正文 首先计算机组成原理是计算机科学与技术专业的一门核心基础课程&#xff0c;它深入…

Python学习从0到1 day27 Python 高阶技巧 ③ 设计模式 — 单例模式

此去经年&#xff0c;再难同游 —— 24.11.11 一、什么是设计模式 设计模式是一种编程套路&#xff0c;可以极大的方便程序的开发最常见、最经典的设计模式&#xff0c;就是我们所学习的面向对象了。 除了面向对象外,在编程中也有很多既定的套路可以方便开发,我们称之为设计模…

算法---解决“汉诺塔”问题

# 初始化步骤计数器 i 1 # 定义移动盘子的函数 def move(n, mfrom, mto): global i # 使用全局变量i来跟踪步骤 print("第%d步:将%d号盘子从%s->%s" % (i, n, mfrom, mto)) # 打印移动步骤 i 1 # 步骤计数器加1 #第一种方法 # 定义汉诺塔问题的递归…

2024游戏陪玩app源码的功能介绍/线上陪玩交友上线即可运营软件平台源码搭建流程

一个完整的陪玩交友系统从概念到实现再到维护的全过程得以清晰展现。每一步都需要团队的紧密协作与细致规划&#xff0c;以确保系统既满足用户需求&#xff0c;又具备良好的稳定性和可扩展性。 基础框架 移动端开发框架&#xff1a;如uniapp&#xff0c;它支持多平台开发&…

AGI自学分享,简单有用的理论与实践

开始必备 谷歌邮箱 没有谷歌邮箱简直“寸步难行”。 GitHub Build and ship software on a single, collaborative platform GitHub GitHub上有所有开源项目的源代码&#xff0c;当然还有许许多多资源的分享。 huggingface huggingface上的space可以试用许多模型demo&a…

基于stm32的智能变频电冰箱系统

基于stm32的智能变频电冰箱系统 持续更新&#xff0c;欢迎关注!!! 基于stm32的智能变频电冰箱系统 随着集成电路技术的发展&#xff0c;单片微型计算机的功能也不断增强&#xff0c;许多高性能的新型机种不断涌现出来。单片机以其功能强、体积小、可靠性高、造价低和开发周期短…