redis7.x源码分析:(1) sds动态字符串

news2024/11/16 17:15:40

sds(Simple Dynamic String)是redis中最基础也是最重要的数据结构之一,其内部使用的key、协议、回复等等都会用它来存储。sds主要设计被用来替代C原生字符串 char *(数组),以便更便捷、更高效、更安全的进行字符串操作管理。其实它和C++标准库中的string在一定程度上是比较类似的,都是用来完成对字符串缓冲区的动态分配、管理以及其它一些相应操作的。

// sds的定义:
typedef char *sds;

sds的定义非常简单,直接就是一个char*的别名,因此sds本身具备C字符串的特性,可以使用strcpy、strlen等函数。
sds相关数据结构中真正重要的是sdshdr的定义,最初老版本的定义如下:

struct sdshdr {
    int len;    // SDS字符串的长度
    int free;   // 未使用的空间大小
    char buf[]; // 字符串数据
};

现在的sdshdr已经重新定义成5个不同的结构了:

/* Note: sdshdr5 is never used, we just access the flags byte directly.
 * However is here to document the layout of type 5 SDS strings. */
struct __attribute__ ((__packed__)) sdshdr5 {
    unsigned char flags; /* 3 lsb of type, and 5 msb of string length */
    char buf[];
};
struct __attribute__ ((__packed__)) sdshdr8 {
    uint8_t len; /* used */
    uint8_t alloc; /* excluding the header and null terminator */
    unsigned char flags; /* 3 lsb of type, 5 unused bits */
    char buf[];
};
struct __attribute__ ((__packed__)) sdshdr16 {
    uint16_t len; /* used */
    uint16_t alloc; /* excluding the header and null terminator */
    unsigned char flags; /* 3 lsb of type, 5 unused bits */
    char buf[];
};
struct __attribute__ ((__packed__)) sdshdr32 {
    uint32_t len; /* used */
    uint32_t alloc; /* excluding the header and null terminator */
    unsigned char flags; /* 3 lsb of type, 5 unused bits */
    char buf[];
};
struct __attribute__ ((__packed__)) sdshdr64 {
    uint64_t len; /* used */
    uint64_t alloc; /* excluding the header and null terminator */
    unsigned char flags; /* 3 lsb of type, 5 unused bits */
    char buf[];
};

#define SDS_TYPE_5  0
#define SDS_TYPE_8  1
#define SDS_TYPE_16 2
#define SDS_TYPE_32 3
#define SDS_TYPE_64 4

这么定义的主要目的是节省存储空间,针对不同的字符串长度使用不同的头。另外结构中新增了flags标记,用来表示使用的是哪个头。如果flags类型是SDS_TYPE_5则高5bit还表示数据长度,因为sdshdr5中并没有长度的成员定义。
sds在分配空间时,是包含头结构的,但真正返回的却是buf成员的地址,这就是sds具备C字符串的特性的原因。由于结构体中设置了 attribute((packed)),表示按单字节对齐,因此可以通过sds[- 1]来获取flags的值,而后获取对应的结构体指针。

#define SDS_HDR(T,s) ((struct sdshdr##T *)((s)-(sizeof(struct sdshdr##T))))

// 获取SDS_TYPE_16对应的结构体指针
struct sdshdr16 *hdr = SDS_HDR(16,s)

接下来先看一下sds分配释放的主要实现 _sdsnewlen和 sdsfree,对外提供的分配函数最终都会调用它来实现。

sds _sdsnewlen(const void *init, size_t initlen, int trymalloc) {
    void *sh;
    sds s;
    // 根据数据长度获取合适的结构体类型
    char type = sdsReqType(initlen);
    /* Empty strings are usually created in order to append. Use type 8
     * since type 5 is not good at this. */
    // inilen为0时, 升级类型预留空间
    if (type == SDS_TYPE_5 && initlen == 0) type = SDS_TYPE_8;
    int hdrlen = sdsHdrSize(type);
    unsigned char *fp; /* flags pointer. */
    size_t usable;

    // 分配: 头 + 数据长度 + 1的空间
    assert(initlen + hdrlen + 1 > initlen); /* Catch size_t overflow */
    sh = trymalloc?
        s_trymalloc_usable(hdrlen+initlen+1, &usable) :
        s_malloc_usable(hdrlen+initlen+1, &usable);
    if (sh == NULL) return NULL;
    // init不为空并且不是SDS_NOINIT, 则重置内存为0
    if (init==SDS_NOINIT)
        init = NULL;
    else if (!init)
        memset(sh, 0, hdrlen+initlen+1);
    // 对外返回的 sds 指针位置, 向后偏移头大小
    s = (char*)sh+hdrlen;
    // 存储flags的指针位置
    fp = ((unsigned char*)s)-1;
    usable = usable-hdrlen-1;
    if (usable > sdsTypeMaxSize(type))
        usable = sdsTypeMaxSize(type);
    // 根据类型,设置结构体中相应的值
    switch(type) {
        case SDS_TYPE_5: {
            *fp = type | (initlen << SDS_TYPE_BITS);
            break;
        }
        case SDS_TYPE_8: {
            SDS_HDR_VAR(8,s);
            sh->len = initlen;
            sh->alloc = usable;
            *fp = type;
            break;
        }
        case SDS_TYPE_16: {
            SDS_HDR_VAR(16,s);
            sh->len = initlen;
            sh->alloc = usable;
            *fp = type;
            break;
        }
        case SDS_TYPE_32: {
            SDS_HDR_VAR(32,s);
            sh->len = initlen;
            sh->alloc = usable;
            *fp = type;
            break;
        }
        case SDS_TYPE_64: {
            SDS_HDR_VAR(64,s);
            sh->len = initlen;
            sh->alloc = usable;
            *fp = type;
            break;
        }
    }
    // 拷贝需要初始化的内容
    if (initlen && init)
        memcpy(s, init, initlen);
    // buf末尾赋0
    s[initlen] = '\0';
    return s;
}

......

void sdsfree(sds s) {
    if (s == NULL) return;
    // 释放时,需要把指针重定向到相应结构体的起始位置
    s_free((char*)s-sdsHdrSize(s[-1]));
}

下面再看下扩容的函数 _sdsMakeRoomFor,它的实现也非常清晰,内部的一些扩容操作都会调用它。

sds _sdsMakeRoomFor(sds s, size_t addlen, int greedy) {
    void *sh, *newsh;
    // 获取剩余空间大小
    size_t avail = sdsavail(s);
    size_t len, newlen, reqlen;
    // 获取当前type
    char type, oldtype = s[-1] & SDS_TYPE_MASK;
    int hdrlen;
    size_t usable;

    /* Return ASAP if there is enough space left. */
    // 空间够用则直接退出
    if (avail >= addlen) return s;

    len = sdslen(s);
    // 获取sds结构体分配内存的起始地址
    sh = (char*)s-sdsHdrSize(oldtype);
    // 新的需要分配的空间大小
    reqlen = newlen = (len+addlen);
    assert(newlen > len);   /* Catch size_t overflow */
    if (greedy == 1) {
        // greedy为1时需要预留空间, 如果新分配空间小于1MB, 则分配空间调整为2倍大小; 如果大于1MB则分配成 + 1MB大小
        if (newlen < SDS_MAX_PREALLOC)
            newlen *= 2;
        else
            newlen += SDS_MAX_PREALLOC;
    }

    // 按新长度获取新的type
    type = sdsReqType(newlen);

    /* Don't use type 5: the user is appending to the string and type 5 is
     * not able to remember empty space, so sdsMakeRoomFor() must be called
     * at every appending operation. */
    if (type == SDS_TYPE_5) type = SDS_TYPE_8;

    hdrlen = sdsHdrSize(type);
    assert(hdrlen + newlen + 1 > reqlen);  /* Catch size_t overflow */
    if (oldtype==type) {
        // 如果类型不变,则直接按照新大小realloc
        newsh = s_realloc_usable(sh, hdrlen+newlen+1, &usable);
        if (newsh == NULL) return NULL;
        s = (char*)newsh+hdrlen;
    } else {
        /* Since the header size changes, need to move the string forward,
         * and can't use realloc */
        // 如果类型变化了, 则重新分配内存并拷贝原来的数据到新内存以及释放原来的内存
        newsh = s_malloc_usable(hdrlen+newlen+1, &usable);
        if (newsh == NULL) return NULL;
        memcpy((char*)newsh+hdrlen, s, len+1);
        s_free(sh);
        s = (char*)newsh+hdrlen;
        // 设置flags
        s[-1] = type;
        // 设置新的长度
        sdssetlen(s, len);
    }
    // 设置可用空间大小
    usable = usable-hdrlen-1;
    if (usable > sdsTypeMaxSize(type))
        usable = sdsTypeMaxSize(type);
    sdssetalloc(s, usable);
    return s;
}

另外,sds在设计中本身也是二进制安全的,而且sds会在末尾多分配1字节并且置’\0’,用于防止一些字符串操作的越界问题。因此它除了用作字符串外,还可以作为二进制数据的存储buf,在redis内部也有着广泛用途。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2241634.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Qt】使用QString的toLocal8Bit()导致的问题

问题 使用Qt发送一个Http post请求的时候&#xff0c;服务一直返回错误和失败信息。同样的url以及post参数&#xff0c;复制黏贴到postman里就可以发送成功。就感觉很神奇。 原因 最后排查出原因是因为参数中含有汉字而导致的编码问题。 在拼接post参数时&#xff0c;使用了…

设计一致性的关键:掌握 Axure 母版使用技巧

设计一致性的关键&#xff1a;掌握 Axure 母版使用技巧 前言 在快节奏的产品开发周期中&#xff0c;设计师们一直在寻找能够提升工作效率和保持设计一致性的方法。 Axure RP&#xff0c;作为一款强大的原型设计工具&#xff0c;其母版功能为设计师们提供了一个强大的解决方案…

鸿蒙next ui安全区域适配(刘海屏、摄像头挖空等)

目录 相关api 团结引擎对于鸿蒙的适配已经做了安全区域的适配&#xff0c;也考虑到了刘海屏和摄像机挖孔的情况&#xff0c;在团结引擎内可以直接使用Screen.safeArea 相关api 团结引擎对于鸿蒙的适配已经做了安全区域的适配&#xff0c;也考虑到了刘海屏和摄像机挖孔的情况&am…

Android OpenGL ES详解——实例化

目录 一、实例化 1、背景 2、概念 实例化、实例数量 gl_InstanceID 应用举例 二、实例化数组 1、概念 2、应用举例 三、应用举例——小行星带 1、不使用实例化 2、使用实例化 四、总结 一、实例化 1、背景 假如你有一个有许多模型的场景&#xff0c;而这些模型的…

前端传数组 数据库存Json : [1,2,3]格式

一、前端正常传数组&#xff0c;但是value.toString() 即可 const empIds ref([1,2,3]) empIds.value empIds.value.toString() await updateApiRules(empIds.value) // 接口传参 二、后端用String类型接收后转换 String[] empIds updateDO.getEmpId().split("&#x…

《Java核心技术 卷I》用户图形界面鼠标事件

鼠标事件 如果只希望用户能够点击按钮或菜单&#xff0c;那么就不需要显式地处理鼠标事件&#xff0c;鼠标操作将由用户界面中的各种组件内部处理&#xff0c;不过&#xff0c;如果希望用户能使用鼠标画图&#xff0c;就需要捕获鼠标移动&#xff0c;点击和拖动事件。 本节&am…

贪心算法入门(三)

相关文章 贪心算法入门&#xff08;一&#xff09;-CSDN博客 贪心算法入门&#xff08;二&#xff09;-CSDN博客 1.什么是贪心算法&#xff1f; 贪心算法是一种解决问题的策略&#xff0c;它将复杂的问题分解为若干个步骤&#xff0c;并在每一步都选择当前最优的解决方案&am…

企业知识中台:构建智慧企业的核心

在当今数字化时代&#xff0c;企业知识中台已成为构建智慧企业的核心。它不仅是企业知识资产的集中地&#xff0c;也是推动企业创新和提高决策效率的关键。本文将分为四个部分&#xff0c;详细探讨知识中台的概念、重要性、构建步骤以及如何利用HelpLook工具搭建企业知识库。 …

基于Spring Boot的在线性格测试系统设计与实现(源码+定制+开发)智能性格测试与用户个性分析平台、在线心理测评系统的开发、性格测试与个性数据管理系统

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…

机器学习 ---线性回归

目录 摘要&#xff1a; 一、简单线性回归与多元线性回归 1、简单线性回归 2、多元线性回归 3、残差 二、线性回归的正规方程解 1、线性回归训练流程 2、线性回归的正规方程解 &#xff08;1&#xff09;适用场景 &#xff08;2&#xff09;正规方程解的公式 三、衡量…

shell脚本(1)

声明&#xff1a;学习视频来自b站up主 泷羽sec&#xff0c;如涉及侵权马上删除文章 感谢泷羽sec 团队的教学 视频地址&#xff1a;shell脚本&#xff08;1&#xff09;脚本创建执行与变量使用_哔哩哔哩_bilibili 本文主要讲解shell脚本的创建、执行和变量的使用。 一、脚本执行…

测试实项中的偶必现难测bug--互斥逻辑异常

问题: 今天线上出了一个很奇怪的问题,看现象和接口是因为数据问题导致app模块奔溃 初步排查数据恢复后还是出现了数据重复的问题,查看后台实际只有一条数据,但是显示在app却出现了两条一模一样的置顶数据 排查: 1、顺着这个逻辑,我们准备在预发复现这个场景,先是cop…

解决MySQL中整型字段条件判断禁用不生效的问题

MySQL中&#xff0c;当尝试将整数与字符串进行比较时&#xff0c;数据库可能会尝试将字符串转换为整数。在这种情况下&#xff0c;空字符串会被转换为整数0&#xff0c;所以0 ! 会被解释为0 ! 0&#xff0c;结果自然是false。 在开发过程中&#xff0c;我们经常需要对数据库中的…

Flink1.19编译并Standalone模式本地运行

1.首先下载源码 2.本地运行 新建local_conf和local_lib文件夹&#xff0c;并且将编译后的文件放入对应的目录 2.1 启动前参数配置 2.1.2 StandaloneSessionClusterEntrypoint启动参数修改 2.1.3 TaskManagerRunner启动参数修改 和StandaloneSessionClusterEntrypoint一样修改…

创建vue插件,发布npm

开发步骤&#xff1a;1.创建一个vue项目&#xff0c;2.开发一个组件。 3.注册成插件。 4.vite和package.json配置。5.发布到npm &#xff11;.创建一个vue项目 npm create vuelatest 生成了vue项目之后&#xff0c;得到了以下结构。 在src下创建个plugins目录。用于存放开发的…

【深度学习】LSTM、BiLSTM详解

文章目录 1. LSTM简介&#xff1a;2. LSTM结构图&#xff1a;3. 单层LSTM详解4. 双层LSTM详解5. BiLSTM6. Pytorch实现LSTM示例7. nn.LSTM参数详解 1. LSTM简介&#xff1a; LSTM是一种循环神经网络&#xff0c;它可以处理和预测时间序列中间隔和延迟相对较长的重要事件。LSTM通…

Queuing 表(buffer表)的优化实践 | OceanBase 性能优化实践

案例问题描述 该案例来自一个金融行业客户的问题&#xff1a;他们发现某个应用对一个数据量相对较小的表&#xff08;仅包含数千条记录&#xff09;访问时&#xff0c;频繁遇到性能下降的情况。为解决此问题&#xff0c;客户向我们求助进行分析。我们发现这张表有频繁的批量插…

【视觉SLAM】4b-特征点法估计相机运动之PnP 3D-2D

文章目录 1 问题引入2 求解P3P 1 问题引入 透视n点&#xff08;Perspective-n-Point&#xff0c;PnP&#xff09;问题是计算机视觉领域的经典问题&#xff0c;用于求解3D-2D的点运动。换句话说&#xff0c;当知道n个3D空间点坐标以及它们在图像上的投影点坐标时&#xff0c;可…

SpringBoot多环境+docker集成企业微信会话存档sdk

SpringBoot多环境docker集成企业微信会话存档sdk 文章来自于 https://developer.work.weixin.qq.com/community/article/detail?content_id16529801754907176021 SpringBoot多环境docker集成企业微信会话存档sdk 对于现在基本流行的springboot环境&#xff0c;官方文档真是比…

DAY64||dijkstra(堆优化版)精讲 ||Bellman_ford 算法精讲

dijkstra&#xff08;堆优化版&#xff09;精讲 题目如上题47. 参加科学大会&#xff08;第六期模拟笔试&#xff09; 邻接表 本题使用邻接表解决问题。 邻接表的优点&#xff1a; 对于稀疏图的存储&#xff0c;只需要存储边&#xff0c;空间利用率高遍历节点链接情况相对容…